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1. GBD 2019 neurological disorders burden estimation methods 

 

The material presented here is adapted from the following sources: 

 

GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries, 1990–2019: a 

systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020; 396: 1135-39. 

 

GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–

2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020; 396:  

1223–49. 

 

Cieza A, Causey K, Kamenov K, Hanson SW, Chatterji S, Vos T. Global estimates of the need for rehabilitation 

based on the Global Burden of Disease study 2019: a systematic analysis for the Global Burden of Disease 

Study 2019. Lancet 2020; 396: 2006–17. 
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A. GBD case definitions of neurological disorders 

 

The GBD case definitions and diagnostic criteria for neurological disorders are presented below: 

 

Stroke 

  

Stroke is defined according to WHO criteria – rapidly developing clinical signs of focal (at times generalized) 

disturbance of cerebral function lasting more than 24 hours or leading to death with no apparent cause other 

than that of vascular origin. Data on transient ischaemic attack (TIA) are not included. 

 

1. Acute stroke: Stroke cases are considered acute from the data of incidence of a first ever stroke through day 

28 following the event. 

2. Chronic stroke: Stroke cases are considered chronic beginning 28 days following the occurrence of an 

event. Chronic stroke includes the sequelae of an acute stroke and all recurrent stroke events. 

3. Ischaemic stroke: an episode of neurological dysfunction caused by focal cerebral, spinal, or retinal 

infarction. 

4. Intracerebral haemorrhage: a focal collection of blood within the brain parenchyma or ventricular system 

that is not caused by trauma.  

5. Subarachnoid haemorrhage: bleeding into the subarachnoid space (the space between the arachnoid 

membrane and the pia mater of the brain or spinal cord) 

 

Migraine 

 

Migraine is a disabling primary headache disorder, typically characterised by recurrent moderate or severe 

unilateral pulsatile headaches. The two major types are migraine without aura and migraine with aura (transient 

neurological symptoms). GBD does not distinguish between migraine with and without aura as most 

epidemiological studies report on overall migraine only. The reference diagnostic criteria for migraine are from 

the International Classification of Headache Disorders (ICHD), which describe five criteria: 

   

1. At least five attacks fulfilling criteria 2-5 

2. Headache attacks lasting 4-72 hour (untreated or unsuccessfully treated) as criteria 

3. Headache has at least two of the following four characteristics: 

o Unilateral location  

o Pulsating quality 

o Moderate or severe pain intensity 

o Aggravation by or causing avoidance of routine physical activity 

4. During headache at least one of the following: 

o Nausea and/or vomiting 

o Photophobia and phono phobia 

5. Not better accounted for by another ICHD-3 diagnosis 

 

Definite migraine is headache that satisfies all the criteria outlined above, while probable migraine satisfies all 

criteria except one. Studies that have looked at the reasons for cases with probable headache not fulfilling 

criteria definite diagnosis have suggested that most often it is the duration criterion that were left unfilled. 

  

Tension-type headache 

 

Tension-type headache (TTH) is characterised by a dull, non-pulsatile, diffuse, band-like (or vice-like) pain of 

mild to moderate intensity in the head or neck. The reference diagnostic criteria for tension-type headache are 

from the ICHD-3, which describes five criteria: 

 

1. At least 10 attacks fulfilling criteria 2-5 

2. Lasing from 30 minutes to 7 days 

3. At least two of the following four characteristics: 

o Bilateral location 

o Pressing or tightening (non-pulsating) quality 

o Mild or moderate intensity 

o Not aggravated by routine physical activity such as walking or climbing stairs 

4. Both of the following: 

o No nausea or vomiting 
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o No more than one of photophobia or phono phobia 

5. Not better accounted for by another ICHD-3 diagnosis 

 

Definite tension-type headache is headache that satisfies all criteria outlined above, while probable tension-type 

headache satisfies all criteria except one.  

 

Epilepsy 

 

Epilepsy is a condition characterised by recurrent (two or more) epileptic seizures, unprovoked by any 

immediate identified cause. A prevalent case of active epilepsy is defined as a person with epilepsy who has had 

at least one epileptic seizure in the previous five years, regardless of antiepileptic drug (AED) treatment. GBD 

defines severe epilepsy as having seizures one or more times per month, idiopathic epilepsy as epilepsy of 

genetic origin or without a definite structural, metabolic, infective, or immune cause, and secondary epilepsy as 

epilepsy due to structural, metabolic, infective, or immune cause. 

 

Cerebral palsy 

 

Cerebral palsy estimation is aggregation of all sequelae of neonatal, congenital and infectious disease with 

mention of moderate or severe motor impairment.  

 

Alzheimer’s disease & other dementias 

 

Dementia is a progressive, degenerative, and chronic neurological disorder typified by memory impairment and 

other neurological dysfunctions. GBD used the Diagnostic and Statistical Manual of Mental Disorders 

(DSMIV) III, IV or V, or ICD case definitions as the reference. DSMIV definition is:  

 

 Multiple cognitive deficits manifested by both memory impairment and one of the following: aphasia, 

apraxia, agnosia, disturbance in executive functioning 

 Must cause significant impairment in occupational functioning and represent a significant decline 

 Course is characterized by gradual onset and continuing cognitive decline 

 Cognitive deficits are not due to other psychiatric conditions 

 Deficits do not occur exclusively during the course of a delirium 

 

A wide array of diagnostic and screening instruments exists, including Clinical Dementia Rating scale (CDR), 

Mini Mental State Examination (MMSE), and the Geriatric Mental State (GMS). For severity rating purposes, 

GBD used the CDR as the reference.  

 

Brain and nervous system cancer 

 

This cause includes malignant neoplasms of the brain and central nervous system, captured by ICD-10 codes 

C70–C70.1, C70.5, C70.6, and C70.9–C72.9. Some registries included mortality from benign neoplasms, as 

they can cause death through intracranial pressure. 

 

Parkinson’s disease 

 

Parkinson’s disease is a chronic, degenerative and progressive neurological condition typified by the loss of 

motor mobility and control most notably tremors. The case definition for GBD is the presence of at least two of 

the four primary symptoms:  

 

 Tremors/trembling 

 Bradykinesia  

 Stiffness of limbs and torso  

 Posture instability 
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Multiple sclerosis 

 

Multiple sclerosis is a chronic, degenerative, and progressive neurological condition typified by the damaging 

of the myelin sheaths. Mc Donald’s criteria for diagnosis were considered the contemporary gold standard.   

 

In GBD, diagnosis by McDonald’s criteria, other published criteria (such as Poser, Schumacher, or McAllen 

criteria), and clinical neurological exam are all treated as reference. 

 

Motor neuron diseases 
 

Motor neuron diseases (MND) are a set of chronic, degenerative, and progressive neurological conditions 

typified by the destruction of motor neurons and the subsequent deterioration of voluntary muscle activity.  

 

The most common MND is amyotrophic lateral sclerosis (ALS). The El Escorial Criteria are the gold standard 

diagnostic criteria. 

  

Other non-communicable neurological disorders 

 

Other non-communicable neurological disorders are defined as all non-communicable neurological disorders 

that are not Alzheimer’s and & dementias, Parkinson’s disease, epilepsy, cerebral palsy, multiple sclerosis, 

motor neuron disease, or headaches. The majority of the unspecified non-communicable neurological disorders 

are muscular dystrophy and Huntington’s disease, but there are a number of other, rare neurological disorders 

included as well. 

 

Encephalitis 

 

Encephalitis is a disease caused by an acute inflammation of the brain. Symptoms of encephalitis can include 

flu-like symptoms like headache, fever, drowsiness, and fatigue, and at times, seizures, hallucinations, or stroke. 

 

Meningitis 

 

Meningitis is a disease caused by inflammation of the meninges, the protective membrane surrounding the brain 

and spinal cord, and is typically caused by an infection in the cerebrospinal fluid. Symptoms include headache, 

fever, stiff neck, and sometimes seizures. 

 

Tetanus 

 

Tetanus is a serious bacterial disease caused by the bacterium Clostridium tetani. 

 

Traumatic brain injury 

 

Traumatic brain injury is defined by an external force applied to the head causing injury to the brain manifest by 

different levels of clinical severity. Traumatic brain injury can be differentiated into mild, moderate, and severe 

based on Glasgow Coma Scale and neurological imaging. 

 

Spinal cord injury 

 

Spinal cord injury is defined as an external injury to the vertebral column which leads to mechanical 

compression or distortion of the spinal cord leading to diminished or lost function below the spinal cord level of 

the injury. GBD separated spinal cord injury into lesions at the neck level and below the neck level given the 

different levels of disability that can be caused by lesions at different levels. 
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B. GBD neurological disorders list 

 

B1.  List of ICD codes mapped to the GBD neurological disorders list 

 

The codes used by GBD 2019 from the 9th and 10th revisions of the International Statistical Classification 

of Diseases and Related Health Problems (ICD) for neurological disorders are listed below: 

 
Cause ICD 10 ICD 9 

Stroke  G45-G46.8, I60-I62, I62.9-I64, I64.1, I65-I69.998, 
Z82.3 

430-439.6, V12.54, V17.1 

Migraine G43-G43.919 346-346.93 

Tension-type headache G44.2-G44.41 307.81, 339.1-339.3 

Epilepsy G40-G41.9, Z82.0 345-345.91 

Alzheimer’s disease & other 

dementias 

F00-F03.91, F06.2, G30-G31.1, G31.8-G32.89 290-290.9, 294.0-294.9, 331-331.2, 331.6-331.7, 

331.82, 331.89-331.9 

Brain and nervous system 

cancer 

C70-C70.1, C70.9-C72.9, Z85.841-Z85.848, 

Z86.011 

191-191.9 

Parkinson's disease G20-G20.9 332-332.0 

Multiple sclerosis G35-G35.0 340-340.9 

Motor neuron diseases G12-G13 335-335.9 

Encephalitis  A83-A85.2, A85.8-A86.0, B94.1, F07.1, G04 -
G05.8, Z24.1 

062-064.9, 310.89, 323-323.9, V05.0-V05.1 

Meningitis  A39-A39.9, A87-A87.9, D86.81, G00-G03.9, 

G06-G09.9, Z20.811, Z22.31 

036-036.9, 047-049.9, 054.72, 320-320.3, 320.5-

322.9, 324-326.9, V01.84 

Tetanus  A33-A35.0, Z23.5 037-037.9, 771.3, V03.7 

Traumatic brain injury F07.2, F07.8, F07.81, F07.89, F07.9, S06, S07, 
T90.2, T90.4 

850, 852, 907 

Spinal cord injury S14, T91.3, S24, S34, T06.0, T06.1, T09.3, 

T09.4, P11.5 

806.0, 806.1, 952.0, 806.2-806.9, 952.1, 952.2, 

952.3, 952.4, 952.8, 952.9 

Other non-communicable 

neurological disorders 

G10, G21.2-G24, G24.1-G25.0, G25.2-G25.3, 

G25.5, G25.8-G26.0, G36-G37.9, G50-G54.1, 

G54.5-G62, G62.1-G65.2, G70-G72, G72.1-
G73.7, G 81-G83.9, G89-G93.6, G93.8-G95.29, 

G95.8-G96, G96.1, G96.12-G96.9, G98-G99.8, 

M33-M33.99, M60-M60.19, M60.8-M60.9, 
M79.7 

307.8-307.80, 307.89, 330-330.9, 331.3-331.5, 

331.8, 331.83, 332.1-333.91, 333.93-338.4, 341-

343.8, 344-344.9, 348-348.9, 350-353.0, 353.5-
357.5, 357.7-359.23, 359.29-359.9, 710.3-710.4, 

725-725.9, 728-728.85, 728.87-728.9, 775.2, 

780.96 

 

B2. List of disorders included in other non-communicable neurological disorders 

 
ICD 10    Other non-communicable neurological disorders 

G10   G10 Huntington disease   

G21.2-G23 G21.2 Secondary parkinsonism due to other external agents   

G21.3 Postencephalitic parkinsonism 

G21.4 Vascular parkinsonism 

G21.8 Other secondary parkinsonism 

G21.9 Secondary parkinsonism, unspecified 

G22 Parkinsonism in diseases classified elsewhere 

G23 Other degenerative diseases of basal ganglia 

G24-G26.0   G24 Dystonia 

G24.1 Idiopathic familial dystonia 

G24.2 Idiopathic nonfamilial dystonia 

G24.3 Spasmodic torticollis 

G24.4 Idiopathic orofacial dystonia 

G24.5 Blepharospasm 

G24.8 Other dystonia 

G24.9 Dystonia, unspecified 

G25.0 Essential tremor (Other extrapyramidal and movement disorders) 

G25.2 Other specified forms of tremor 

G25.3 Myoclonus  

G25.5 Other chorea 

G25.8 Other specified extrapyramidal and movement disorders   

G25.9 Extrapyramidal and movement disorder, unspecified   

G26.0 Extrapyramidal and movement disorders in diseases classified elsewhere  
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G36-G37.9 G36 Other acute disseminated demyelination   

G36.0 Neuromyelitis optica [Devic]   

G36.1 Acute and subacute haemorrhagic leukoencephalitis [Hurst]   

G36.8 Other specified acute disseminated demyelination   

G36.9 Acute disseminated demyelination, unspecified   

G37 Other demyelinating diseases of central nervous system  

G37.0 Diffuse sclerosis   

G37.1 Central demyelination of corpus callosum   

G37.2 Central pontine myelinolysis   

G37.3 Acute transverse myelitis in demyelinating disease of central nervous system   

G37.4 Subacute necrotizing myelitis   

G37.5 Concentric sclerosis [Baló]   

G37.8 Other specified demyelinating diseases of central nervous system   

G37.9 Demyelinating disease of central nervous system, unspecified   

G50-G53.8 G50 Disorders of trigeminal nerve  

G50.0 Trigeminal neuralgia   

G50.1 Atypical facial pain   

G50.8 Other disorders of trigeminal nerve   

G50.9 Disorder of trigeminal nerve, unspecified   

G51 Facial nerve disorders   

G51.0 Bell palsy   

G51.1 Geniculate ganglionitis   

G51.2 Melkersson syndrome   

G51.3 Clonic hemifacial spasm   

G51.4 Facial myokymia   

G51.8 Other disorders of facial nerve   

G51.9 Disorder of facial nerve, unspecified   

G52 Disorders of other cranial nerves   

G52.0 Disorders of olfactory nerve   

G52.1 Disorders of glossopharyngeal nerve   

G52.2 Disorders of vagus nerve   

G52.3 Disorders of hypoglossal nerve   

G52.7 Disorders of multiple cranial nerves   

G52.8 Disorders of other specified cranial nerves   

G52.9 Cranial nerve disorder, unspecified   

G53 Cranial nerve disorders in diseases classified elsewhere   

G53.0 Postzoster neuralgia   

G53.1 Multiple cranial nerve palsies in infectious and parasitic diseases classified elsewhere   

G53.2 Multiple cranial nerve palsies in sarcoidosis   

G53.3 Multiple cranial nerve palsies in neoplastic disease   

G53.8 Other cranial nerve disorders in other diseases classified elsewhere   

G54-G55.8 G54 Nerve root and plexus disorders   

G54.0 Brachial plexus disorders   

G54.1 Lumbosacral plexus disorders   

G54.5 Neuralgic amyotrophy   

G54.6 Phantom limb syndrome with pain   

G54.7 Phantom limb syndrome without pain   

G54.8 Other nerve root and plexus disorders   

G54.9 Nerve root and plexus disorder, unspecified 

G55 Nerve root and plexus compressions in diseases classified elsewhere   

G55.1 Nerve root and plexus compressions in intervertebral disc disorders   

G55.2 Nerve root and plexus compressions in spondylosis   

G55.3 Nerve root and plexus compressions in other dorsopathies   

G55.8 Nerve root and plexus compressions in other diseases classified elsewhere   

G56-G65.2 G56 Mononeuropathies of upper limb   

G56.0 Carpal tunnel syndrome 

G56.1 Other lesions of median nerve 

G56.2 Lesion of ulnar nerve 
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G56.3 Lesion of radial nerve 

G56.4 Causalgia 

G56.8 Other mononeuropathies of upper limb 

G56.9 Mononeuropathy of upper limb, unspecified 

G57 Mononeuropathies of lower limb   

G57.0 Lesion of sciatic nerve   

G57.1 Meralgia paraesthetica   

G57.2 Lesion of femoral nerve   

G57.3 Lesion of lateral popliteal nerve   

G57.4 Lesion of medial popliteal nerve   

G57.5 Tarsal tunnel syndrome   

G57.6 Lesion of plantar nerve   

G57.8 Other mononeuropathies of lower limb   

G57.9 Mononeuropathy of lower limb, unspecified 

G58 Other mononeuropathies   

G58.0 Intercostal neuropathy 

G58.7 Mononeuritis multiplex 

G58.8 Other specified mononeuropathies 

G58.9 Mononeuropathy, unspecified 

G59 Mononeuropathy in diseases classified elsewhere   

G60 Hereditary and idiopathic neuropathy   

G60.0 Hereditary motor and sensory neuropathy   

G60.1 Refsum disease   

G60.2 Neuropathy in association with hereditary ataxia   

G60.3 Idiopathic progressive neuropathy   

G60.8 Other hereditary and idiopathic neuropathies   

G60.9 Hereditary and idiopathic neuropathy, unspecified   

G61 Inflammatory polyneuropathy 

G61.0 Guillain-Barré syndrome 

G61.1 Serum neuropathy 

G61.8 Other inflammatory polyneuropathies 

G61.9 Inflammatory polyneuropathy, unspecified 

G62.1 Alcoholic polyneuropathy   

G62.2 Polyneuropathy due to other toxic agents   

G62.8 Other specified polyneuropathies   

G62.9 Polyneuropathy, unspecified   

G63 Polyneuropathy in diseases classified elsewhere   

G63.0 Polyneuropathy in infectious and parasitic diseases classified elsewhere   

G63.1 Polyneuropathy in neoplastic disease   

G63.2 Diabetic polyneuropathy   

G63.3 Polyneuropathy in other endocrine and metabolic diseases   

G63.4 Polyneuropathy in nutritional deficiency   

G63.5 Polyneuropathy in systemic connective tissue disorders   

G63.6 Polyneuropathy in other musculoskeletal disorders   

G63.8 Polyneuropathy in other diseases classified elsewhere   

 G64 Other disorders of peripheral nervous system  

 G65 Sequelae of inflammatory and toxic polyneuropathies 

 G65.0 Sequelae of Guillain-Barré syndrome 

 G65.1 Sequelae of other inflammatory polyneuropathy 

 G65.2 Sequelae of toxic polyneuropathy 

G70-G73.7 G70 Myasthenia gravis and other myoneural disorders   

G70 Myasthenia gravis and other myoneural disorders   

G70.0 Myasthenia gravis   

G70.1 Toxic myoneural disorders   

G70.2 Congenital and developmental myasthenia   

G70.8 Other specified myoneural disorders   

G70.9 Myoneural disorder, unspecified   

G71 Primary disorders of muscles   
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G71.0 Muscular dystrophy   

G71.1 Myotonic disorders   

G71.2 Congenital myopathies   

G71.3 Mitochondrial myopathy, not elsewhere classified   

G71.8 Other primary disorders of muscles   

G71.9 Primary disorder of muscle, unspecified   

G72 Other myopathies   

G72.0 Drug-induced myopathy   

G72.1 Alcoholic myopathy   

G72.2 Myopathy due to other toxic agents   

G72.3 Periodic paralysis   

G72.4 Inflammatory myopathy, not elsewhere classified   

G72.8 Other specified myopathies   

G72.9 Myopathy, unspecified   

G72.1 Alcoholic myopathy   

G72.2 Myopathy due to other toxic agents   

G72.3 Periodic paralysis   

G72.4 Inflammatory myopathy, not elsewhere classified   

G72.8 Other specified myopathies   

G72.9 Myopathy, unspecified   

G73 Disorders of myoneural junction and muscle in diseases classified elsewhere   

G73.0 Myasthenic syndromes in endocrine diseases   

G73.1 Lambert-Eaton syndrome   

G73.2 Other myasthenic syndromes in neoplastic disease   

G73.3 Myasthenic syndromes in other diseases classified elsewhere   

G73.4 Myopathy in infectious and parasitic diseases classified elsewhere   

G73.5 Myopathy in endocrine diseases   

G73.6 Myopathy in metabolic diseases   

G73.7 Myopathy in other diseases classified elsewhere   

G81-G83.9 G81 Hemiplegia   

G81.0 Flaccid hemiplegia   

G81.1 Spastic hemiplegia   

G81.9 Hemiplegia, unspecified   

G82 Paraplegia and tetraplegia   

G82.0 Flaccid paraplegia   

G82.1 Spastic paraplegia   

G82.2 Paraplegia, unspecified   

G82.3 Flaccid tetraplegia   

G82.4 Spastic tetraplegia   

G82.5 Tetraplegia, unspecified   

G83 Other paralytic syndromes   

G83.0 Diplegia of upper limbs   

G83.1 Monoplegia of lower limb   

G83.2 Monoplegia of upper limb   

G83.3 Monoplegia, unspecified   

G83.4 Cauda equina syndrome   

G83.8 Other specified paralytic syndromes   

G83.9 Paralytic syndrome, unspecified  

G89-G89.4 G89 Pain, not elsewhere classified 

 G89.0 Central pain syndrome 

 G89.1 Acute pain, not elsewhere classified 

 G89.11 Acute pain due to trauma 

 G89.12 Acute post-thoracotomy pain 

 G89.18 Other acute postprocedural pain 

 G89.2 Chronic pain, not elsewhere classified 

 G89.21 Chronic pain due to trauma 

 G89.22 Chronic post-thoracotomy pain 

 G89.28 Other chronic postprocedural pain 
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 G89.29 Other chronic pain 

 G89.3 Neoplasm related pain (acute) (chronic) 

 G89.4 Chronic pain syndrome 

G90-G90.9 G90 Disorders of autonomic nervous system   

G90.0 Idiopathic peripheral autonomic neuropathy   

G90.1 Familial dysautonomia [Riley-Day]   

G90.2 Horner syndrome   

G90.3 Multi-system degeneration   

G90.4 Autonomic dysreflexia   

G90.8 Other disorders of autonomic nervous system   

G90.9 Disorder of autonomic nervous system, unspecified   

G91-G91.9 G91 Communicating hydrocephalus 

G91.1 Obstructive hydrocephalus 

G91.2 Normal-pressure hydrocephalus 

G91.3 Post-traumatic hydrocephalus, unspecified 

G91.8 Other hydrocephalus 

G91.9 Hydrocephalus, unspecified 

G92 G92 Toxic encephalopathy 

G93-G93.9 G93 Other disorders of brain   

G93.0 Cerebral cysts   

G93.1 Anoxic brain damage, not elsewhere classified   

G93.2 Benign intracranial hypertension   

G93.3 Postviral fatigue syndrome   

G93.4 Encephalopathy, unspecified   

G93.5 Compression of brain   

G93.6 Cerebral oedema   

G93.8 Other specified disorders of brain 

G93.9 Disorder of brain, unspecified 

G94-G94.8 G94 Other disorders of brain in diseases classified elsewhere 

G94.0* Hydrocephalus in infectious and parasitic diseases classified elsewhere (A00-B99+) 

G94.1* Hydrocephalus in neoplastic disease (C00-D48+) 

G94.2* Hydrocephalus in other diseases classified elsewhere 

G94.8* Other specified disorders of brain in diseases classified elsewhere 

G95-G95.9 G95 Other diseases of spinal cord 

G95.0 Syringomyelia and syringobulbia 

G95.1Vascular myelopathies 

G95.2 Cord compression, unspecified 

G95.8 Other specified diseases of spinal cord 

G95.9 Disease of spinal cord, unspecified 

G96-G96.9 G96 Other disorders of central nervous system 

G96.0 Cerebrospinal fluid leak 

G96.1 Disorders of meninges, not elsewhere classified 

G96.12 Meningeal adhesions  

G96.8 Other specified disorders of central nervous system 

G96.9 Disorder of central nervous system, unspecified 

G98 G98 Other disorders of nervous system, not elsewhere classified 

G99-G99.8     G99.0* Autonomic neuropathy in endocrine and metabolic diseases 

G99.1* Other disorders of autonomic nervous system in other diseases classified elsewhere 

G99.2* Myelopathy in diseases classified elsewhere 

G99.8* Other specified disorders of nervous system in diseases classified elsewhere 

M33-M33.9 M33 Dermatopolymyositis 

M33.0 Juvenile dermatomyositis 

M33.1 Other dermatomyositis 

M33.2 Polymyositis 

M33.9 Dermatopolymyositis, unspecified 

M60-M60.9 M60 Myositis 

M60.0 Infective myositis 

M60.1 Interstitial myositis 
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M60.2 Foreign body granuloma of soft tissue, not elsewhere classified 

M60.8 Other myositis 

M60.9 Myositis, unspecified 

M79.7 M79.7 Fibromyalgia 
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C. GBD data and analysis framework 
 

The overview of data inputs and analysis framework for GBD is shown in the following flowchart: 
 

 

YLLs is years of life lost. YLDs is years lived with disability. DALYs is disability‐adjusted life‐years. PAFs is population attributable fractions.  

Rectangular boxes represent analytical steps, cylinders represent databases, and parallelograms represent intermediate and final results. 

 

The flowchart above illustrates the flow of the key components of the GBD estimation process, including: 

 

1. Incorporation of appropriate covariates (step 1) 

2. All-cause mortality estimation (steps 2-5): the data come from sources such as censuses, surveys and vital 

registrations. The all-cause mortality estimation process (steps 2-4) can be divided into four distinct but 

interconnected areas: child mortality and adult mortality between ages 15 and 60, estimation of a complete 

set of age-specific death rates, estimation of HIV mortality and final estimates of age-specific mortality 

including HIV and fatal discontinuities (also known as mortality shocks) (step 5). 

3. Causes of death estimation (steps 6-9): cause of death data are derived from vital registrations, verbal 

autopsy studies, mortality surveillance and, for selected causes, police records, crime reports and data 

collection systems for deaths due to conflict and natural disasters (step 7). Extensive data corrections and 

redistributions of ill-defined causes are made to correct for measurement bias between data sources. Cause 

of death ensemble modelling (CODEm), an ensemble model, is a systematized approach to analysing cause 

of death data for all but a few causes (step 9). CODEm explores a wide range of modelling approaches and 

varying predictive covariates to find an ensemble of best-performing models based on statistical tests. To 

do so, 30% of the data were withheld from each model and the model fit is evaluated by how well it covers 

the data that were left out. By repeating this process many times over the best performing models are 

selected. As all results in GBD are estimated 1,000 times over to propagate all sources of uncertainty, 

among the 1,000 runs we end up with an ensemble of up to 100 or more different types of models and 

covariates that are selected among the 1,000 runs. 

4. Rescaling deaths to equal all-cause mortality (step 10): as all these estimates were made separately for each 

disease and injury, the sum of these could exceed or fall below the all-cause mortality estimated from the 

demographic analyses of steps 2 to 5. Therefore, all deaths by age, sex, geography, year and cause to match 

the all-cause death estimates (this process was called CoD Correct). 
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5. Estimation of disease sequelae prevalence, incidence, and duration (steps 11-12): population surveys, 

cohort studies, administrative records of hospitalisations and other health service encounters, disease 

registries, notifications, surveillance systems are the main data sources for non-fatal estimation (step 11). 

Extensive corrections of data to deal with measurement bias arising from study design or case definitions 

are applied. DisMod-MR 2.1 is the main analytical tool for non-fatal estimation (step 12). It is a Bayesian 

meta-regression software program that uses a lognormal model. The meta-regression component allows 

corrections for known sources of measurement error. Its core function is to make estimates of prevalence 

and incidence of disease that are consistent with data on mortality risk and remission (defined in GBD as 

the ‘cure rate’). For a select number of causes that do not fit well in the three states model (alive without 

disease, prevalent case of disease and death) of DisMod-MR 2.1, we use alternative modelling strategies. 

6. Cross-validation of impairment levels (step 13): for a number of impairments in GBD terminology, such as 

anaemia, heart failure, hearing and vision loss, we first estimate the total levels of prevalence and incidence 

and then ensured that all sequelae of diseases that lead to this impairment add up to the total. 

7. Analysis of the nature and external cause of injury is done separately (step 14). Assignment of severity 

distributions for the main disabling conditions (step 15): In GBD, terminology sequelae are the disabling 

consequences for which we make estimates. All sequelae are defined to be mutually exclusive and 

collectively exhaustive. Many diseases have sequelae with a gradation by severity such as mild, moderate 

and severe dementia. Often the epidemiological data on severity distribution is sparse. Therefore, we first 

model the epidemiology of all cases of disease and then apply a severity distribution from the sparser data. 

8. Assignment of disability weights for health states (step 16): each sequela is matched with a health state or 

combination of health states for which we have a disability quantifies the relative severity. 

9. Disability weights were derived from population and internet surveys of over 60,000 respondents 

answering pair-wise comparison question of random combinations of health states. Each pair of health 

states was described with brief lay descriptions highlighting the main symptoms and impairments. 

Respondents were asked to nominate the ‘healthier’ of each presented pair. Analytical methods exist to 

formalise the intuition that if the majority of respondents nominate one health state in a pair as the healthier 

these lie farther apart on a severity scale than pairs assigned similar proportions as the healthier. In order to 

anchor estimates on a 0-1 scale of severity, a subset of respondents was asked additional population health 

equivalence questions on a selection of health states. These questions ask for a choice of the greater amount 

of health produce by two health programs; one that prevented sudden death in 1,000 persons and another 

that prevented the onset of a GBD health state for the rest of 2,000, 5,000 or 10,000 persons’ lives. 

10. Simulation of comorbidity (step 17): the last step of non-fatal estimation is a microsimulation (‘COMO’) to 

deal with comorbidity. For every age, sex, geography and year, 40,000 hypothetical persons were generated 

who have none, one or more of the GBD sequelae. In those with multiple sequelae their combined level of 

disability is estimated multiplicatively. That means we assume the disability from having two health states 

is less than the sum of the corresponding disability weights. This avoids assigning disability greater than 

one to any individual, which would indicate that person is worse off than being dead. 

11. Estimation of healthy life expectancy (step 18): health life expectancy is estimated from the life tables 

generated in step 4 and the all-cause YLD rates from step 19b. 

12. Computation of YLLs, YLDs, and DALYs from diseases and injuries with uncertainty (steps 19a-19c): 

YLLs (step 19a) are estimated as the product of counts of death by ages, sex, geography, year and cause 

and a normative life expectancy at the age of the death. The GBD standard life expectancy used as this 

norm is a compilation of the lowest observed mortality rates by age in all mortality data collections of 

populations greater than 5 million. The standard life table reflects a life expectancy at birth of 86.59 years. 

YLDs are the output from COMO (step 19b). DALYs are the simple addition of YLLs and YLDs (step 

19c). 

13. Risk factor estimation (steps 20-24): GBD 2019 also makes estimates for individual and combined risk 

factors. This involves estimation of risk factor exposure (step 20); the formulation of a minimum level of 

exposure to each risk that is associated with the least amount of health loss (step 21); derivation of relative 

risks of disease outcomes for each pair of a risk factor and a disease or injury for which there is judged to 

be sufficient evidence of a causal relationship (step 22); and the estimation of population attributable 

fractions of disease caused by each risk factor. For a few risk-outcome pairs it is hard to define exposure 

and a corresponding risk while directly observed proportions of disease are available, such as for the 

proportion of HIV/AIDS due to unsafe sex or injecting drug use (step 23). For combinations of risks how 

much of the risk is mediated through other risks (step 24) was assessed. For instance, all of the effect of 

high salt intake is mediated through elevated blood pressure and part of the risk of increased body mass 

index is through elevated blood pressure, cholesterol or fasting plasma glucose. 

14. Computation of YLLs, YLDs, and DALYs attributable to risk factors (steps 25a-25c): YLLs, YLDs and 

DALYs attributable to each risk factor are generated by multiplying population attributable fractions with 

disease estimates (steps 25a-c). 
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D. Neurological disorders morbidity estimation 

 

The major data inputs used for estimating prevalence or incidence of neurological disorders in India are 

population-based published studies. Neurological disorders morbidity was modelled using the DisMod-

MR 2.1 platform. Morbidity estimation for the neurological disorders presented in this paper are 

described below. 

 

D1. Stroke 

  

The steps in the estimation of non-fatal stroke burden are shown in the following flowchart: 

 

Comorbidity correction (COMO)

YLLs

Comorbidity 
adjusted 

YLDs

DALYs

Unadjusted YLD by 
sequela

Disability weights 
for each sequela

Ischemic Stroke

Ratio of 
Acute:Chronic CSMR

Ischemic stroke 
deaths 

(Fauxcorrect)

First ever acute 
ischemic stroke w/

CSMR estimates

Chronic ischemic 
stroke w/CSMR 

estimates

Literature data

Inpatient hospital 
data

Survey data

Severity splits 
(acute)

Prevalence of acute 
ischemic stroke, 
severity level 3

Scaled DisMod 
proportion models 

(acute)

28-day Rankin Scores 
from Literature

Prevalence of acute 
ischemic stroke, 
severity level 4

Prevalence of acute 
ischemic stroke, 
severity level 5

Prevalence of acute 
ischemic stroke, 
severity level 2

Prevalence of acute 
ischemic stroke, 
severity level 1

Severity splits
(chronic)

Prevalence of chronic 
ischemic stroke, 
severity level 3

Scaled DisMod 
proportion models 

(chronic)

1 year Rankin Scores 
from Literature

Prevalence of chronic 
ischemic stroke, 
severity level 4

Prevalence of chronic 
ischemic stroke, 
severity level 5

Prevalence of chronic 
ischemic stroke, 
severity level 2

Prevalence of chronic 
ischemic stroke, 
severity level 1

28-day survivorship 
from excess 
mortality * 
incidence

Crosswalking/ 
Age-sex 
splitting

Split non-subtype 
specific survey 

data

28-day survivors 
from acute model

Chronic 
ischemic 

CSMR

Acute 
ischemic 

CSMR

Prevalence of 
asymptomatic 

chronic ischemic 
stroke

Nonfatal 
database

Dismod-MR

Nonfatal 
database

Dismod-MR

Location-level covariates
1) ln(LDI)

2) SEV for Ischemic Stroke

Location-level covariates
1) ln(LDI)

2) SEV for Ischemic Stroke

Intracerebral hemorrhage (ICH)

ICH deaths 
(Fauxcorrect)

First ever acute 
ICH w/CSMR 

estimates

Chronic ICH w/
CSMR estimates

Literature data

Inpatient hospital 
data

Survey data

Ratio of 
Acute:Chronic CSMR

Severity splits 
(acute)

Prevalence of acute 
ICH, severity level 3

Scaled DisMod 
proportion models 

(acute)

28-day Rankin Scores 
from Literature

Prevalence of acute 
ICH, severity level 4

Prevalence of acute 
ICH, severity level 5

Prevalence of acute 
ICH, severity level 2

Prevalence of acute 
ICH, severity level 1

Severity splits
(chronic)

Prevalence of chronic 
ICH, severity level 3

Scaled DisMod 
proportion models 

(chronic)

1 year Rankin Scores 
from Literature

Prevalence of chronic 
ICH, severity level 4

Prevalence of chronic 
ICH, severity level 5

Prevalence of chronic 
ICH, severity level 2

Prevalence of chronic 
ICH, severity level 1

28-day survivorship 
from excess 
mortality * 
incidence

Crosswalking/Age-
sex 

splitting

Split non-subtype 
specific survey 

data

28-day survivors 
from acute model

Chronic ICH 
CSMR

Acute ICH 
CSMR

Prevalence of 
asymptomatic 

chronic ICH

Nonfatal 
database

Dismod-MR

Nonfatal 
database

Dismod-MR

Location-level covariates
1) ln(LDI)

2) SEV for ICH

Location-level covariates
1) ln(LDI)

2) SEV for ICH

SAH deaths 
(Fauxcorrect)

First ever acute 
SAH w/CSMR 

estimates

Chronic SAH w/
CSMR estimates

Literature data

Inpatient hospital 
data

Survey data

Ratio of 
Acute:Chronic CSMR

Severity splits 
(acute)

Prevalence of acute 
SAH, severity level 3

Scaled DisMod 
proportion models 

(acute)

28-day Rankin Scores 
from Literature

Prevalence of acute 
SAH, severity level 4

Prevalence of acute 
SAH, severity level 5

Prevalence of acute 
SAH, severity level 2

Prevalence of acute 
SAH, severity level 1

Severity splits
(chronic)

Prevalence of chronic 
SAH, severity level 3

Scaled DisMod 
proportion models 

(chronic)

1 year Rankin Scores 
from Literature

Prevalence of chronic 
SAH, severity level 4

Prevalence of chronic 
SAH, severity level 5

Prevalence of chronic 
SAH, severity level 2

Prevalence of chronic 
SAH, severity level 1

28-day survivorship 
from excess 
mortality * 
incidence

Crosswalking/ 
Age-sex 
splitting

Split non-subtype 
specific survey 

data

28-day survivors 
from acute model

Chronic SAH 
CSMR

Acute SAH 
CSMR

Prevalence of 
asymptomatic 

chronic SAH

Nonfatal 
database

Dismod-MR

Nonfatal 
database

Dismod-MR

Location-level covariates
1) ln(LDI)

Location-level covariates
1) ln(LDI)

2) Mean systolic blood pressure

Subarachnoid hemorrhage (SAH)

Final GBD 2017 
Chronic SAH 

CSMR

Final GBD 2017 
Acute SAH CSMR

Final GBD 2017 
Chronic ICH 

CSMR

Final GBD 2017 
Acute ICH CSMR

Final GBD 2017 
Chronic ICH 

CSMR

Final GBD 2017 
Acute ICH CSMR

 

Data 

  

GBD included inpatient hospital data, adjusted for readmission and primary to any diagnosis using correction 

factors estimated from US claims data. In addition, unpublished stroke registry data were included for acute 

ischaemic stroke, acute intracerebral haemorrhage, and acute subarachnoid haemorrhage. Survey data were also 

included for chronic stroke. These surveys were identified based on expert opinion and review of major survey 

series focused on world health that included questions regarding self-reported history of stroke. Unspecified 

strokes (ICD‐10 I64) were split into ischaemic stroke, intracerebral haemorrhage, and subarachnoid 



16 

 

haemorrhage according to the proportions of subtype specific coded strokes in the original data. ICD‐10 I62 

was also split into intracerebral haemorrhage, and subarachnoid haemorrhage using the same approach. 

 

As the data sources available are diverse, GBD adjusted these data to the preferred or reference case definition. 

For this, incidence and excess mortality data that did not meet the reference case definitions were cross-walked 

using MR-BRT, a bayesian meta-regression tool. Data points for first and recurrent strokes combined were 

adjusted using data for first strokes only as reference. For ischaemic stroke and intracerebral haemorrhage, data 

points that reported all stroke subtypes combined were adjusted using studies with subtype‐specific information 

as reference. Data which included only persons who survived to hospital admission were adjusted using data on 

both fatal and nonfatal strokes as reference. Additionally, subtype‐specific, inpatient clinical informatics data 

were adjusted using subtype‐specific literature estimates as a reference. The formula for computing adjustment 

factors is given in equation below. A standardized age variable (age scaled) and a sex variable were also 

included to the cross-walking procedure to adjust for the possibly of bias. 

 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐷𝑒𝑓
= 𝑖𝑛𝑣𝑙𝑜𝑔𝑖𝑡(𝑙𝑜𝑔𝑖𝑡(𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝐷𝑒𝑓) − 𝐵𝑒𝑡𝑎𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝐷𝑒𝑓 − 𝐵𝑒𝑡𝑎𝑆𝑒𝑥 ∗ 𝑆𝑒𝑥 − 𝐵𝑒𝑡𝑎𝐴𝑔𝑒𝑠𝑐𝑎𝑙𝑒𝑑

∗ 𝐴𝑔𝑒 𝑆𝑐𝑎𝑙𝑒𝑑) 

 
Severity splits and disability weights 

  
The tables below illustrate the severity level, lay description, and disability weights for stroke. A review of 

literature identified the epidemiologic studies which reported the degree of disability at 28 days (for acute 

stroke) or one year (for chronic stroke) using the modified Rankin scale (mRS) and the Mini-Mental State 

Examination (MMSE) or the Montreal Cognitive Assessment (MoCA). The mRS assesses functional 

capabilities, while the MMSE and MoCA tests provide evaluations of cognitive functioning. These measures 

were then mapped to the existing GBD categories as indicated below. 

 

Severity distribution, details on the severity levels for acute stroke and the associated disability weights with 

that severity 

  

Severity level Lay description Modified 

Rankin score 

Cognitive 

status 

Disability weights 

(95% CI) 

Stroke, mild Has some difficulty in moving around and some 

weakness in one hand, but is able to walk 
without help. 

1 N/A 0.019 (0.01–0.032) 

Stroke, moderate Has some difficulty in moving around, and in 

using the hands for lifting and holding things, 
dressing, and grooming. 

2, 3 MoCA>=24 or 

MMSE>=26 

 

0.07 (0.046–0.099) 

Stroke, moderate 

plus cognition 
problems 

Has some difficulty in moving around, in using 

the hands for lifting and holding things, dressing 
and grooming, and in speaking. The person is 

often forgetful and confused. 

2, 3 MoCA<24 or 

MMSE<26 

0.316 (0.206–0.437) 

Stroke, severe Is confined to bed or a wheelchair, has difficulty 

speaking, and depends on others for feeding, 
toileting, and dressing. 

4, 5 MoCA>=24 or 

MMSE>=26 

0.552 (0.377–0.707) 

Stroke, severe plus 
cognition problems 

Is confined to bed or a wheelchair, depends on 
others for feeding, toileting, and dressing, and 

has difficulty speaking, thinking clearly, and 
remembering things. 

 MoCA<24 or 
MMSE<26 

0.588 (0.411–0.744) 

 

Severity distribution, details on the severity levels for chronic stroke and the associated disability weights with 

that severity  

 

Severity level Lay description Modified 

Rankin score 

Cognitive 

status 

Disability weights 
(95% CI) 

Stroke, 

asymptomatic 

 0 N/A N/A 

Stroke, long-term 

consequences, 
mild 

Has some difficulty in moving around and 

some weakness in one hand, but is able to walk 
without help. 

1 N/A 0.019 

(0.01–0.032) 

Stroke, long-term 

consequences, 

Has some difficulty in moving around, and in 

using the hands for lifting and holding things, 

2, 3 MoCA>=24 

or 

0.07 

(0.046–0.099) 
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moderate dressing, and grooming. MMSE>=26 

Stroke, long-term 
consequences, 

moderate plus 
cognition 
problems 

Has some difficulty in moving around, in using 
the hands for lifting and holding things, 

dressing and grooming, and in speaking. The 
person is often forgetful and confused. 

2, 3 MoCA<24 
or 

MMSE<26 

0.316 

(0.206–0.437) 

Stroke, long-term 

consequences, 
severe 

Is confined to bed or a wheelchair, has 

difficulty speaking, and depends on others for 
feeding, toileting, and dressing. 

4, 5 MoCA>=24 

or 
MMSE>=26 

0.552 

(0.377–0.707) 

Stroke, long-term 

consequences, 
severe plus 

cognition 
problems 

Is confined to bed or a wheelchair, depends on 

others for feeding, toileting, and dressing, and 
has difficulty speaking, thinking clearly, and 

remembering things. 

4, 5 MoCA<24 

or 
MMSE<26 

0.588 

(0.411–0.744) 

 
DisMod-MR 2.1, a Bayesian meta-regression tool, was used to model the six severity levels, with an 

independent proportion model for each. Reports which grouped mRS scores differently than the mapping 

(eg, 0-2) were adjusted in DisMod by estimating the association between these alternate groupings and 

the preferred mappings. These statistical associations were used to adjust data points to the referent 

category as necessary. The six models were scaled such that the sum of the proportions for all levels 

equalled. 

 
Modelling strategy 

 

The general approach employed for all of the components of the stroke modelling process is detailed 

elsewhere (Lancet 2020; 396: 1204–22). Data points were adjusted from alternative to reference case 

definitions using estimates from statistical models generated by MR-BRT for the acute models. The 

summary exposure values (SEV), which are the relative risk-weighted prevalence of exposure, were 

included as covariates for the ischaemic stroke or intracerebral haemorrhage models as appropriate, and  

a covariate for country income was used as a country-level covariate for both models. Subarachnoid 

haemorrhage did not include an SEV covariate, but did include a covariate for country income for excess 

mortality. GBD used the ratio of acute:chronic cause-specific mortality estimated by the final DisMod 

model estimates to divide stroke deaths into acute and chronic stroke deaths, using the global average for 

the proportion of acute chronic stroke mortality. The acute and chronic models were then run using the 

same incidence, prevalence, and case fatality data as well as the custom cause-specific mortality rates as 

input data. 

 

The first-ever acute subtype-specific models were run with CSMR as derived from FauxCorrect and 

epidemiological data as described above using Dismod-MR. GBD then calculated the rate of surviving 

until 28 days after an acute event for all three subtypes using the modelled estimates of excess mortality 

and incidence from the acute stroke models. Twenty-eight-day survivorship data was uploaded into the 

chronic subtype-specific with CSMR models. These chronic models also use CSMR as derived from 

FauxCorrect and epidemiological data as described above. Models were evaluated based on expert 

opinion, comparison with previous iterations, and model fit. Models were evaluated based on expert 

opinion, comparison with previous iterations, and model fit. The covariates used by cause in the 

estimation process, as well as the beta and exponentiated beta values are reported elsewhere (Lancet 

2020; 396: 1204–22). 
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D2. Headache disorders 

 

The steps in the estimation of non-fatal headache disorders burden are shown in the following flowchart: 

 

Data 

 

Data from population-based representative surveys that reported the prevalence of migraine or tension-type 

headache available from a systematic review were used. 

 

Age and sex splitting 

 

Reported estimates of prevalence were split by age and sex where possible. First, if studies reported prevalence 

for broad age groups by sex, and also by specific age groups but for both sexes combined, age-specific 

estimates were split by sex using the reported sex ratio and bounds of uncertainty. Second, prevalence data for 

both sexes that could not be split using a within-study ratio were split using a sex ratio derived from a meta-

analysis of existing sex-specific data using MR-BRT. Finally, after the application of bias adjustments, where 

studies reported estimates across age groups spanning 25 years or more, these were split into five-year age 

groups using the prevalence age pattern estimated by the best DisMod-MR 2.1 for each headache type. 

 

Data adjustment  

 

A list of binary adjustment criteria which are a modified version of quality indicators of epidemiological 

studies on headache as shown in the table below were used.1 

 

Study covariate Notation 

Less desirable (1) Reference (zero) 

Other than one-year 
recall period 

Point prevalence One-year prevalence 

Not representative Selected population  

 

General population or community-based sample from 

whole country OR general population or community-

based sample from defined region within a country, or 
school-based (for children)  

Low-quality sampling 

method 

Not stated OR no (or failed) attempt to secure 

representativeness 

Total defined population, or random sample corrected 

for population demographics OR random sample 
uncorrected for population demographics 

Poor response Not stated, or <70% 70–100% 

Low-quality survey 

method and type of 
interviewer 

Not stated OR self-administered 

(unsupervised) questionnaire OR telephone or 
face-to-face interview by untrained or 

unspecified interviewer(s) 

Face-to-face interview with headache expert or trained 

interviewer 
 

Low-quality validation 

of diagnostic 
instrument 

Instrument not specified or not validated OR 

validated, but sensitivity and/or specificity 
<70% OR validated only in screen-positive 

Validated in target population or similar, and sensitivity 

and specificity 70%, or all diagnoses made in face-to-
face or telephone interviews by headache expert 
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 sub-sample, or in clinic or unspecified sample, 

but sensitivity and specificity 70% 

Low-quality diagnostic 
criteria 

Not stated OR stated, other than ICHD OR 
ICHD (or reasonable modification) 

ICHD (or reasonable modification) 

 

The mean and standard error for the coefficients were calculated using the MR-BRT adjustment method. All 

study covariates were initially evaluated independently for each type of headache. However, covariate values 

varied not only in magnitude but in direction across these headache types. Because GBD assumes that the same 

study covariate should adjust data at least in the same direction for these headache types, the final study 

covariates were evaluated taking all available headache data into account. 

 

Modelling strategy 

 

Migraine 

 

Separate DisMod models were run for estimation of definite migraine, probable migraine, and the total 

migraine category and upper bound on remission was set 0.1 across all models. Afterwards, the results 

were scaled of probable and definite headache to the total headache envelope to ensure consistency. 

 

Because some data sources, especially earlier data from before International Classification of Headache 

Disorders (ICHD) became the standard (the initial criteria were published in 1988), largely report on definite 

migraine, studies were adjusted that reported only on definite migraine to the total migraine category in order to 

better inform that model. All data that reported on both definite and total migraine were used in regression 

models by sex in order to derive an age and sex specific adjustment.   

 

Tension-type headache 

 

DisMod models were run for definite tension-type headache, probable tension-type headache, and the total 

tension-type headache category, setting an upper bound on remission of 0.5 across all models. Afterwards, the 

results of probable and definite headache to the total headache envelope to ensure consistency.  

  

Because some data sources, especially earlier data from before ICHD became the standard largely report on 

definite tension-type headache, studies were adjusted that reported only on definite tension-type headache to the 

total tension-type headache category in order to better inform that model. Initially, all data that reported on both 

definite and total tension-type headache were used in regression models by sex in order to derive an age- and 

sex-specific adjustment. These sex-specific models resulted in an implausible age pattern for females such that 

the age-pattern of the age-split data points was the inverse of the original data. Consequently, a regression 

model was used to derive an age-specific adjustment that was applied to both sexes.  

 

Reference 

 

1. Steiner, T.J., Stovner, L.J., Al Jumah, M. et al. Improving quality in population surveys of headache 

prevalence, burden and cost: key methodological considerations. J Headache Pain 2013; 14: 87.    
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D3. Epilepsy 

 

The steps in the estimation of non-fatal epilepsy burden are shown in the following flowchart:  

Data 

 

Population-based studies were included if they reported on prevalence, incidence, remission rate, and excess 

mortality rate, relative risk of mortality, standardised mortality ratio, or with condition mortality rate. Studies 

were excluded if there is no clearly defined sample (e.g. among clinic attenders or patient organisation members 

with non-specific or non-representative catchment area). 

   

Modelling strategy 

 

The prevalence of epilepsy was modelled in two steps: first, an epilepsy impairment envelope was created and 

second, the envelope was split into primary (or idiopathic) and secondary epilepsies. Each of these were 

subdivided into severe (on average one or more fits per month) and ‘non-severe’ epilepsies. No severe cases 

were subdivided into ‘treated’ and ‘un-treated’ epilepsy. Treated cases were then subdivided into treated cases 

with fits (one and 11 fits on average in the preceding year) and treated cases without fits (no fits reported in the 

preceding year). 

 

In the first step, DisMod-MR 2.1 was used for the epilepsy impairment envelope to model a consistent fit 

between incidence, prevalence, remission, and standardised mortality ratio data. The table below illustrates the 

covariates, parameters, beta and exponentiated beta values for epilepsy. 

 
Study covariate Parameter Beta  Exponentiated beta 

Log-transformed age-standardised SEV scalar for epilepsy Prevalence 0.76 2.14 (2.12-2.21) 

LDI (I$ per capita) Excess mortality rate -0.55 0.58 (0.37-0.90) 

 

In the second step, mixed-effects generalized linear models (binomial family) were used to predict the proportion 

of idiopathic epilepsy, the proportion of severe epilepsy, the proportion of treated epilepsy and the proportion of 

epilepsy that is treated without fits. 

 

Because not all of the data on the proportion of idiopathic epilepsy use optimal case finding methods (using CT 

scans or MRIs in addition to EEGs in order to diagnose secondary epilepsy), first an initial linear regression 

model was run with a covariate on study quality. Then the beta from this model was used to crosswalk studies 

with non-optimal case finding methods to those with adequate methods. The adjusted data are then used in the 

regression for the proportion of epilepsy that is idiopathic, with a fixed effect on SDI as well as a random effect 

on GBD super-region. 

 

 

Input data

Process

Results

Database

Disability weights

Nonfatal

Burden estimation

Cause of death

Covariates

Input Data

Survey Data

Dismod-MR 2.1
Prevalence & incidence by 
location/year/age/sex for 

epilepsy

Comorbidity 
correction 

(COMO)

YLLs

Comorbidity 
adjusted 

YLDs

DALYs

Epilepsy

Disability weights 
for each sequela

Unadjusted 
YLD by 
sequela

Claims data – 
outpatient visits

Locatio n-level cov ariates :
 LDI

Pigmeat Consumption
Epilepsy SEV Scalar

Idio pa th ic Prop ortio n:
Mixed Effects Binomial Regression 

Fixed effects: under-5 mortality, pigmeat 
consumption, sanitation, study quality

Random Effects: Super-region  

Seizure free  on  tx
Binomial Regression

Fixed effect: Healthcare access and quality 
index

T reatm ent Propo rt io n
Mixed Effects Binomial Regression 

Fixed effect: Healthcare access and quality 
index

Random Effects: Super-region  
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Similar models were used to predict the proportion of severe epilepsy and treatment gap based on the reported 

proportions extracted from the systematic review. To predict the proportion of severe epilepsy and the treatment 

gap, mixed-effects models was used with a fixed effect on the log of Healthcare Access and Quality (HAQ) Index 

and a random effect on GBD super-region. The generalized linear model (binomial family) was used to generate 

predictions for the proportion of treated epilepsy that is seizure-free with a fixed effect on the log of HAQ Index. 

 

A fixed effect on epilepsy cause-specific mortality, under-5 mortality rate, sanitation, and pig meat consumption 

as well as random effects on region and country was tested in different models, but they did not improve the 

models. Country-specific 1,000 draws of estimates were generated for each year between 1980 and 2019 for each 

of the models.  

 

Severity splits and disability weights  

 

The table below illustrates the severity levels, descriptions, and disability weights associated with epilepsy. These 

are calculated using regressions from literature (i.e. frequency of seizures). 

 
Severity level Lay description Disability weights (95% CI) 

Severe (seizures >= once 

per month) 

This person has sudden seizures one or more times each month, with 

violent muscle contractions and stiffness, loss of consciousness, and loss 
of urine or bowel control. Between seizures the person has memory loss 

and difficulty concentrating. 

0.552 (0.375-0.71) 

less severe (seizures < 

once per month) 

This person has sudden seizures two to five times a year, with violent 

muscle contractions and stiffness, loss of consciousness, and loss of 

urine or bowel control. 

0.263 (0.173 0.367) 

Treated without fits This person has a chronic disease that requires medication every day and 
causes some worry but minimal interference with daily activities. 

0.049 (0.031 0.072) 

 

D4. Alzheimer's disease & other dementias 

 

The steps in the estimation of non-fatal Alzheimer’s disease & other dementias burden are shown in the 

following flowchart: 

 

Unlike most causes in the GBD, dementia mortality and morbidity estimates are modelled jointly. This is 

because of marked discrepancies between prevalence data and cause of death data. Specifically, prevalence data 

suggest little to no variation over time, whereas age-standardised mortality rates in vital registrations in high-

income countries have increased multiple times over this same period. Additionally, prevalence variation 

between countries is much smaller than the variation in death rates assigned to dementia in vital registration. 

These discrepancies were attribute to changing coding practices rather than epidemiological change. 
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Data 

 

To inform estimates of burden due to dementia, mortality data from relative risk studies and linked 

hospital to mortality data, as well as prevalence data from surveys and administrative data were used. 

 

Item Response Theory for prevalence prediction 

 

The prevalence models for dementia are data sparse, and there are not many surveys done in low-income 

settings. However, there are a larger body of surveys that collect data on cognitive tests and functional 

limitations which are the two main components of a DSM or ICD diagnosis. Predictions of dementia 

prevalence using information from these questions would allow for expanded data coverage and 

additional information in locations where there are currently no data guiding estimates. 

  

Generating these predictions requires calibrating a model to samples that have information about both 

functional limitations, cognition and adjudicated dementia diagnoses. However, making comparisons 

across surveys can be difficult, as each survey asks a different set of questions about cognition and 

limitations, although there is some overlap. This overlap allows for the use of item response theory 

methods for the harmonization of these scales. Once the scales are harmonized the subsamples can be 

utilized to create a model for the prediction of prevalence.  

 

Excluding incidence 

 

Incidence data were excluded, because in locations with high quality cohort data on prevalence and 

incidence, the two are not compatible (incidence data implies a higher prevalence than what is reported). 

Because dementia has a slow, insidious onset and prevalence is easier to measure, GBD trust prevalence 

data more and rely on this, excluding incidence data from DisMod. 

 

Severity splits  

 

A systematic review was conducted to collect information on the proportion of individuals in each 

dementia severity class out of the population of all individuals with dementia. The Clinical Dementia 

Rating (CDR) scale was taken as the reference definition for severity classification, along with a doctor-

given diagnosis according to DSM III, IV, V or ICD case definitions as our reference definition for 

dementia. 

 

However, as a neurodegenerative disorder with a wide range of categories in which symptoms manifest, 

there are an abundance of classification tools which discern between severity levels along different 

criteria. GBD accepted severities classified by: 

 

 Clinical dementia rating sum-of-boxes (CSR-SB) 

 Blessed test of information, memory, and concentration (BIMC) 

 Global deterioration scale (GDS) 

 Geriatric Mental State Examination (GMS) 

 CAMDEX 

 DSM-III-R 

 Karasawa’s 

 

GBD excluded any studies which classified dementia severity according to scales that only evaluated 

cognitive function and memory, excluding activities of daily living (ADLs). The most prominent such 

scale is Mini Mental State Examination (MMSE). The table below illustrates the severity levels, 

descriptions, and disability weights associated with Alzheimer's disease & other dementias. 

 
Severity level Lay description 

Mild The person has some trouble remembering recent events and finds it hard to concentrate and make 

decisions and plans. They may have slight to moderate difficulty engaging in community affairs, 
complicated hobbies, and intellectual interests. 

Moderate The person retains highly learned material, but has severe memory problems, is disoriented with respect to 

time and sometimes place. They are severely impaired in their ability to handle problems and make social 
judgements. They require assistance with daily activities, and only retain simple chores and hobbies. 

Severe The person has complete memory loss, no longer recognizes close family members, and requires help with 

all daily activities, including personal care. 
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Modelling strategy  

 

The prevalence data was sex split, cross-walked and age split. Studies with age and sex detail separately were 

split into age- and sex-specific data points. Data specified as “both” sex data were split into male- and female-

specific data points using MR-BRT to get a model ratio of female/male prevalence and then using the following 

equations: 

 

Male prevalence:  

𝑝𝑟𝑒𝑣𝑚𝑎𝑙𝑒 = 𝑝𝑟𝑒𝑣𝑏𝑜𝑡ℎ ∗  
 𝑝𝑜𝑝𝑏𝑜𝑡ℎ

(𝑝𝑜𝑝𝑚𝑎𝑙𝑒 + 𝑟𝑎𝑡𝑖𝑜 ∗ 𝑝𝑜𝑝𝑓𝑒𝑚𝑎𝑙𝑒)
 

Female prevalence: 

𝑝𝑟𝑒𝑣𝑓𝑒𝑚𝑎𝑙𝑒 = 𝑟𝑎𝑡𝑖𝑜 ∗  𝑝𝑟𝑒𝑣𝑚𝑎𝑙𝑒  

 

Data points were split where the age range was greater than 25 years using the global age pattern. Dementia 

studies are heterogeneous. Even with a smaller number of definitions (DSM/ICD), there are a large number of 

different ways to diagnose dementia. Most use a two-step procedure, where screening is first done using a 

cognitive test to then fully evaluate those that fall below a certain pre-defined threshold. Differences in methods 

were controlled by crosswalking alternative case definitions to reference. Study covariates are based on broad 

categories determined after going through the diagnostic heterogeneity and there are some added for specific 

criteria that GBD know are biased. Crosswalking was carried out using a logit difference network meta-

regression analysis.  

   

Two country-level covariates were included in the initial DisMod model. Age-standardised education was used 

as a proxy for general brain health/use that may be protective of dementia – specifically Alzheimer’s disease. 

Smoking prevalence (age-standardised, both sexes) was also used as a covariate to guide estimates, as the 

literature has shown a positive relationship between smoking and dementia.  

 

Two DisMod models were run with prevalence inputs – the first uses adjusted prevalence data (DisMod Model 

1 in flowchart), which accounts for dementia caused by other diseases. The second uses unadjusted dementia 

(DisMod Model 2 in flowchart) which accounts for all dementia regardless of cause (this is the dementia 

impairment envelope).  

   

The cause-specific mortality results from final fatal estimates were pulled into a final DisMod model (Model 2), 

with the same settings as the previous models. To prevent double counting of prevalent cases, both under 

dementia and under other causes that can lead to dementia, GBD adjusted the dementia prevalence to exclude 

cases caused by these other conditions, which include stroke, Parkinson’s disease, traumatic brain injury and 

Down’s Syndrome. For this GBD used data from the Aging, Demographics and Memory study (ADAMS) and 

new systematic reviews, to estimate the relative risk of getting dementia for each condition included in the 

ADAMS dataset (stroke, Parkinson’s disease, TBI). GBD first fit logistic regression models predicting the 

outcome of dementia given each exposure, with an additional covariate on age. 

 

GBD then used these models to predict the probability of dementia given each exposure at various ages and 

divided the probability of having dementia by the probability of not having dementia at each age to calculate 

relative risks. After calculating age specific relative risks, these data and estimates of dementia prevalence from 

DisMod-MR 2.1 model was used to calculate the population attributable fractions (PAFs) for each cause and 

age using the formula:  

𝑃𝐴𝐹 =  
𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 ∗ (𝑅𝑅 − 1)

𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 ∗ (𝑅𝑅 − 1) + 1
 

 

Finally, the PAF was multiplied by the total prevalence to get the amount of dementia prevalence that 

can be attributed to each cause and subtracted this from the total prevalence to get the prevalence of 

dementia that is not due to other GBD causes. 
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D5. Brain and central nervous system cancer  

 

The steps in the estimation of non-fatal brain and central nervous system (CNS) cancer burden is shown in the 

following flowchart: 

 
 

To estimate disability for each cancer, total prevalence is split into four sequelae: 1. diagnosis and primary 

therapy; 2. controlled phase; 3. metastatic phase; and 4. terminal phase. The diagnosis and primary therapy 

phase is defined as the time from the onset of symptoms to the end of treatment. The controlled phase is 

defined as the time between finishing primary treatment and the earliest of either: cure (defined as 

recurrence- and progression-free survival after ten years); death from another cause; or progression to the 

metastatic phase. The metastatic phase is defined as the time period of intensive treatment for metastatic 

disease, as determined for each cancer by SEER (Surveillance, Epidemiology, and End Results Program) 

averages. The terminal phase is defined as the one-month period prior to death. Each of these four 

sequelae has a separate disability weights, which are the same across cancers.  

 

Data 

 

Cancer incidence is directly estimated from cancer mortality using mortality to incidence ratios (MIRs). 

Cancer incidence was sought from individual cancer registries and from Cancer Incidence in Five Continents 

(CI5).1-10 Data were excluded if they were not representative of the population (e.g., hospital-based registries). 

 

Modelling strategy 

 

Estimation of cancer mortality and MIR estimation has been described in detail elsewhere (Lancet 2020; 396: 

1204–22). The final GBD cancer mortality estimates are transformed to incidence estimates by using MIRs 

(which are modeled separately). To summarize the MIR estimation process: incidence and mortality data from 

cancer registries were matched by cancer, age, sex, year, and location to generate M/I ratios. These MIR data 

were used to fit cause-specific fixed effect logistic regression models with covariates for sex, categorical age, and 

the HAQ index:  
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logit (𝑀𝐼 𝑟𝑎𝑡𝑖𝑜𝑐,𝑎,𝑠,𝑡) = 𝛼 + β1𝐻𝐴𝑄𝐼𝑐,𝑡 + ∑ β2𝐼𝑎

𝐴

𝑎

+ β3𝐼𝑠 + ϵ𝑐,𝑎,𝑠,𝑡   

 

c: country, a: age group, t: time (years); s: sex 

HAQI: Healthcare Access and Quality Index 

I: indicator variable  

"ϵ" c,a,s,t: error term 

 

These models were then used to obtain MIR estimates for all combinations of GBD age, sex, year, cause, and 

location. Data points were outliered manually if they clearly influenced the model in an unrealistic way. For 

example, a data point was marked as an outlier if it created a single-year, single age group spike in model 

predictions that was inconsistent with the trend suggested by surrounding data points. Results from the final 

linear model were used as input for space-time smoothing and a Gaussian Process Regression (ST-GPR).  

 

Final MIR estimates at the 1,000-draw level were combined with final mortality estimates (also at the 1,000-draw 

level) to generate 1,000 draws of incidence estimates (which provides an estimated mean incidence with 95% 

uncertainty interval). It was assumed that uncertainty in the MIR is independent of uncertainty in the estimated 

mortality. 

 

After transforming the final GBD cancer mortality estimates to incidence estimates (step 1 in the general 

cancer flowchart), incidence was combined with annual relative survival estimates from 1 to 10 years (step 

7 in the flowchart). Using the survival estimation methods, MIRs generated the yearly cancer relative 

survival estimates utilizing age-specific curves. GBD used SEER*Stat to obtain mortality, incidence, and 

relative survival statistics from the 9 SEER registries reporting from 1980-2014 (step 2), by cancer type, 

sex, 5-year blocks (i.e., 1980-84, 1985-1989, etc.), and 5-year age groups (except combining 80+). For 

each cancer, GBD modelled 5-year relative survival with the SEER MIRs. These models were then 

applied to the GBD MIR estimates to predict an estimated 5-year survival for each age/sex/year/location 

(step 4). To prevent unrealistic values, predicted 5-year survival values were winsorized to be between 0% 

and 100% survival. To generate yearly survival estimates up to 10 years, SEER sex- and age-specific 

annual 1- through 10-year relative survival data were downloaded from patients diagnosed between 2001 

and 2010. The proportion of the predicted GBD 5-year survival estimate to the SEER 5-year survival 

statistic was calculated as a scalar, and then used to generate yearly survival estimates by scaling the 1-10 

year SEER curve to the GBD survival predictions under the proportional hazard assumption (step 5). 

 

To transform relative to absolute survival (adjusting for background mortality), GBD 2019 lifetables were used 

(step 6 and 7 in the flowchart) to calculate lambda values: lambda= (ln(nLxn/nLxn+1))/5, where nLx=person 

years lived between ages x and x+n (from GBD lifetable). Absolute survival was then calculated using an 

exponential survival function (absolute survival = relative survival*elambda*t). Absolute survival is combined 

with incidence to estimate the prevalence at each year after diagnosis, which is then split into the four sequelae 

(step 8 in the flowchart).  

 

For the purposes of calculating disability due to cancer, survivors beyond 10 years were considered cured. 

For the survivor population, prevalence was divided into two sequelae (1. diagnosis and primary therapy; 

2. controlled phase). For the population that did not survive beyond 10 years, the yearly prevalence was 

divided into the four sequelae by assigning the fixed durations for each of the diagnosis and primary 

therapy phase, metastatic phase, and terminal phase, and assigning the remaining prevalence to the 

controlled phase (step 8 in the flowchart).  

 

GBD assumed that for the population surviving up to 10 years, only the prevalence population being in 

remission experiences additional disability due to procedures. To estimate the prevalence of the cancer 

population in remission during the first 10 years after diagnosis with and without procedure-related 

disability, GBD multiplied the prevalence of the population in the remission phase with the proportion of 

the population undergoing a procedure. This step allowed to estimate disability during the remission phase 

for both the population experiencing disability due to the remission phase alone, as well as the population 

experiencing disability from the remission phase and the additional procedure-related disability. 

 

Lastly, the procedure sequelae prevalence and general sequelae prevalence were multiplied with their 

respective disability weights to obtain the number of YLDs (steps 11 and 12 in the flowchart). The sum of 

these YLDs is the final YLD estimate associated with each cancer. 
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The following table provides the lay description and disability weights associated with brain and nervous system 

cancer.  

 
Health state Lay description Disability weights (95% CI) 

Cancer, diagnosis and primary 

therapy  

This person has pain, nausea, fatigue, weight loss and high anxiety. 0.288 (0.193 - 0.399) 

Cancer, controlled phase  This person has a chronic disease that requires medication every day and 

causes some worry but minimal interference with daily activities. 

0.049 (0.031- 0.072) 

Cancer, metastatic  This person has severe pain, extreme fatigue, weight loss and high 

anxiety. 

0.451 (0.307 - 0.600) 

Terminal phase, with 

medication  

This person has lost a lot of weight and regularly uses strong medication 

to avoid constant pain. The person has no appetite, feels nauseous, and 

needs to spend most of the day in bed. 

0.540 (0.377 - 0.687) 
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D6. Parkinson's disease 

 

The steps in the estimation of non-fatal Parkinson’s disease burden are shown in the following flowchart: 
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Data 

  

To inform estimates of burden due to Parkinson’s disease, GBD used mortality data from vital registration 

systems, as well as prevalence data from population-based representative surveys. Certain studies have been 

outliered on a case-by-case basis due to subsequent review and exclusion due to inappropriateness of the study 

design, or case ascertainment that conflict with existing gold-standard data, where possible.  

 

Modelling strategy 

 

Studies with age and sex detail separately were split into age- and sex-specific data points. Standard GBD sex 

splitting methods were used for studies with only “both” sex data points: GBD modelled the ratio of 

female/male prevalence in MR-BRT and then calculated male prevalence: 

 

𝑝𝑟𝑒𝑣𝑚𝑎𝑙𝑒 = 𝑝𝑟𝑒𝑣𝑏𝑜𝑡ℎ ∗  
 𝑝𝑜𝑝𝑏𝑜𝑡ℎ

(𝑝𝑜𝑝𝑚𝑎𝑙𝑒 + 𝑟𝑎𝑡𝑖𝑜 ∗ 𝑝𝑜𝑝𝑓𝑒𝑚𝑎𝑙𝑒)
 

 

And then calculated female prevalence: 

 

𝑝𝑟𝑒𝑣𝑓𝑒𝑚𝑎𝑙𝑒 = 𝑟𝑎𝑡𝑖𝑜 ∗  𝑝𝑟𝑒𝑣𝑚𝑎𝑙𝑒 
 

Summary of covariates used in the Parkinson’s Disease DisMod-MR meta-regression model 

 
Covariate Type Parameter Exponentiated beta 

(95% Uncertainty interval) 

Smoking prevalence 
(age-standardized) 

Prevalence -1.15 0.32 (0.28 – 0.36) 

Healthcare access and 

quality index 

Excess mortality rate -0.025 0.98 (0.97 – 0.98) 

 

Severity splits and disability weights 

  

Hoehn and Yahr stages were used to determine severity. The cut-points were updated to more accurately 

correspond the lay descriptions of severities. Specifically, a Hoehn and Yahr stage 4 corresponds to a 

designation of severe, where before it was classified as moderate. 
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Severity Stage 

Mild ≤2.0 

Moderate 2.5-3.5 

Severe ≥4 

 

The following table provides the lay description and disability weights associated with Parkinson’s disease. 

 
Severity 

level 

Lay description Disability weights 

(95% CI) 

Mild Has mild tremors and moves a little slowly, but is able to 

walk and do daily activities without assistance. 

0.01 (0.005–0.019) 

Moderate Has moderate tremors and moves slowly, which causes 

some difficulty in walking and daily activities. The person 

has some trouble swallowing, talking, sleeping, and 
remembering things. 

0.267 (0.181–0.372) 

Severe Has severe tremors and moves very slowly, which causes 

great difficulty in walking and daily activities. The person 

falls easily and has a lot of difficulty talking, swallowing, 

sleeping, and remembering things. 

0.575 (0.396–0.73) 

 

D7. Multiple sclerosis 

 

The steps in the estimation of multiple sclerosis disease burden are shown in the following flowchart: 

 
 

Data 

 

The data underpinning estimates of burden due to multiple sclerosis are generally of two types. The first are 

representative, population-based, cross-sectional or longitudinal studies reported in peer-reviewed journals and 

identified via a search-string-based review, and described in previous reports. Estimates of epidemiologic 

measures (prevalence, incidence, etcetera) were manually extracted from these publications. The second type are 

claims data as obtained and processed by the GBD Clinical Informatics team.  

 

For studies that reported epidemiologic measures (generally prevalence or incidence) by age for both sexes 

combined, and also by sex for all ages combined, GBD calculated the sex-ratio of cases in that study and applied 

it to the age-specific measures to estimate age-sex-specific measures.  

 

To estimate sex-specific measures from studies that reported only for both sexes combined, GBD modeled the 

log sex ratio in MR-BRT using all sex-specific measurements from all other studies in the database and 

combined these with the GBD sex-specific population estimates for the relevant age-group. Estimate of 

prevalence were applied for calculating:  
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𝑝𝑟𝑒𝑣𝑚𝑎𝑙𝑒 = 𝑝𝑟𝑒𝑣𝑏𝑜𝑡ℎ ∗  
 𝑝𝑜𝑝𝑏𝑜𝑡ℎ

(𝑝𝑜𝑝𝑚𝑎𝑙𝑒 + 𝑟𝑎𝑡𝑖𝑜 ∗ 𝑝𝑜𝑝𝑓𝑒𝑚𝑎𝑙𝑒)
 

 

and then calculating female prevalence: 

 

𝑝𝑟𝑒𝑣𝑓𝑒𝑚𝑎𝑙𝑒 = 𝑟𝑎𝑡𝑖𝑜 ∗  𝑝𝑟𝑒𝑣𝑚𝑎𝑙𝑒  

 

 

Also, equivalent equations were used for calculating incidence. 

 

Modelling strategy  
 

GBD used DisMod 2.1 as the main analytical tool for the multiple sclerosis estimation process. Inputs included 

prevalence and incidence data, as well as the cause-specific mortality rate (CSMR) estimated in the GBD causes 

of death analysis, and excess mortality rate (EMR) obtained by dividing CSMR by prevalence data-points. Prior 

settings included zero remission for all ages, no incidence or excess mortality for persons under 5 years old, and 

incidence limited to less than 0.000005 after the age of 60 years.  

 

The table below illustrates the covariates, parameters, beta and exponentiated beta values for multiple sclerosis. 

 
Covariate Parameters Beta coeff (95% CI) Exponentiated 

Absolute value of average latitude Prevalence 0.041 (0.037 to 0.042) 1.04 (1.04 to 1.04) 

Absolute value of average latitude Incidence 0.041 (0.036 to 0.045) 

 

1.04 (1.04 to 1.05) 

Healthcare Access and Quality index Excess mortality rate -0.027 (-0.037 to -0.022) 

 

0.97 (0.96 to 0.98) 

 

Severity splits and disability weights  

 

Kurtzke’s Expanded Disability Status Scale (EDSS) was used to determine severity splits for multiple sclerosis. 

The EDSS scores corresponding to each severity are as follows: 

 

 Asymptomatic: EDSS = 0 

 Mild: 0 < EDSS ≤ 3.5 

 Moderate: 3.5 < EDSS ≤ 6.5 

 Severe: 6.5 < EDSS ≤ 9.5 

 

The following table provides the lay description and disability weights associated with multiple sclerosis. 

  
Severity level Lay description Disability weights (95% CI) 

Asymptomatic - 0 (0-0) 

Mild  Has mild loss of feeling in one hand, is a little unsteady while walking, 
has slight loss of vision in one eye, and often needs to urinate urgently. 

 

0.183 (0.124–0.253) 
 

Moderate Needs help walking, has difficulty with writing and arm coordination, has 
loss of vision in one eye and cannot control urinating. 

 

0.463 (0.313–0.613) 
 

Severe Has slurred speech and difficulty swallowing. The person has weak arms 

and hands, very limited and stiff leg movement, has loss of vision in both 
eyes and cannot control urinating. 

 

0.719 (0.534–0.858) 
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D8. Motor neuron diseases 

 

The steps in the estimation of non-fatal motor neuron diseases burden are shown in the following flowchart: 

 
 

Data 

 

Data were extracted from representative population-based study with well-defined sample, and reports on 

prevalence, incidence, remission, excess mortality, relative risk of mortality, standardised mortality ratio, or  

with-condition mortality rate for motor neuron diseases in aggregate or a specified motor neuron disease 

available from a systematic review.  

 

All sex-specific data were used to estimate a pooled sex-ratio using MR-BRT. This ratio was combined with 

sex-specific population estimates for the year-age-location combinations corresponding to each data point 

reported for both sexes combined, to estimate sex-specific data-points prior to modeling. These were applied  

by calculating male prevalence:  

 

𝑝𝑟𝑒𝑣𝑚𝑎𝑙𝑒 = 𝑝𝑟𝑒𝑣𝑏𝑜𝑡ℎ ∗  
 𝑝𝑜𝑝𝑏𝑜𝑡ℎ

(𝑝𝑜𝑝𝑚𝑎𝑙𝑒 + 𝑟𝑎𝑡𝑖𝑜 ∗ 𝑝𝑜𝑝𝑓𝑒𝑚𝑎𝑙𝑒)
 

 

and then calculating female prevalence: 

 

𝑝𝑟𝑒𝑣𝑓𝑒𝑚𝑎𝑙𝑒 = 𝑟𝑎𝑡𝑖𝑜 ∗  𝑝𝑟𝑒𝑣𝑚𝑎𝑙𝑒  

 

Also, equivalent equations were used for calculating incidence.  

 

Modelling strategy  

 

GBD used DisMod 2.1 as the main analytical tool for motor neuron diseases estimation. Inputs included 

prevalence and incidence data, as well as the cause-specific mortality rate (CSMR) estimated in the GBD causes 

of death analysis, and excess mortality rate (EMR) obtained by dividing CSMR by prevalence data-points. Prior 

settings are limited to 0 remission at all ages and maximum incidence of 0.0004. GBD also constrain the super-

region random effects for prevalence and incidence to -0.5 and 0.5 to account for spurious inflation of regional 

differences. The following covariates were employed to improve model predictions. 

 
Covariate Measure Beta coefficient (95% CI) Exponentiated 

Absolute value of average latitude Prevalence 0.032 (0.031 to 0.033) 1.03 (1.03 to 1.03) 

LDI (I$ per capita) Excess mortality rate -0.5 (-0.5 to -0.5) 0.61 (0.61 to 0.61) 
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 Severity splits and disability weights  

 

The ALSFRS is an instrument for evaluating the functional status of patients with amyotrophic lateral sclerosis. 

It can be used to monitor functional changes in a patient over time. GBD subsequently mapped ALSFRS scores 

into GBD severities, and sequelae into different combinations of speech problems, chronic obstructive 

pulmonary disease, and motor impairment. After determining the severity status of each case for the three 

symptom umbrellas, GBD subsequently estimated the relative proportion of each combination of symptom class 

and their respective severities. Those without any symptoms (eg, no severity) were categorised as having worry 

about the diagnosis for disability estimation. The following table displays the various sequelae and their 

associated proportions. 

 
Sequela Proportion 

(Mean) 

Proportion 

(Lower) 

Proportion 

(Upper) 

Mild motor impairment, mild respiratory problems and speech problems due to motor neuron disease 0.01779 0.01658 0.01909 

Mild motor impairment, moderate respiratory problems and speech problems due to motor neuron 

disease 

0.00270 0.00225 0.00324 

Mild motor impairment, severe respiratory problems and speech problems due to motor neuron 
disease 

0.00082 0.00059 0.00113 

Mild motor impairment, and speech problems due to motor neuron disease 0.02052 0.01922 0.02190 

Moderate motor impairment, mild respiratory problems and speech problems due to motor neuron 
disease 

0.03377 0.03210 0.03552 

Moderate motor impairment, moderate respiratory problems and speech problems due to motor 

neuron disease 

0.00715 0.00640 0.00799 

Moderate motor impairment, severe respiratory problems and speech problems due to motor neuron 
disease 

0.00286 0.00240 0.00342 

Moderate motor impairment, and speech problems due to motor neuron disease 0.03041 0.02883 0.03208 

Severe motor impairment, mild respiratory problems and speech problems due to motor neuron 

disease 

0.05242 0.05035 0.05457 

Severe motor impairment, moderate respiratory problems and speech problems due to motor neuron 

disease 

0.02247 0.02111 0.02392 

Severe motor impairment, severe respiratory problems and speech problems due to motor neuron 

disease 

0.01365 0.01259 0.01479 

Severe motor impairment and speech problems due to motor neuron disease 0.04765 0.04567 0.04970 

Mild respiratory problems and speech problems due to motor neuron disease 0.01157 0.01060 0.01263 

Moderate respiratory problems and speech problems due to motor neuron disease 0.00142 0.00111 0.00182 

Severe respiratory problems and speech problems due to motor neuron disease 0.00023 0.00013 0.00043 

Speech problems due to motor neuron disease 0.02457 0.02315 0.02608 

Mild motor impairment and mild respiratory problems due to motor neuron disease 0.02245 0.02109 0.02389 

Mild motor impairment and moderate respiratory problems due to motor neuron disease 0.00275 0.00230 0.00329 

Mild motor impairment and severe respiratory problems due to motor neuron disease 0.00068 0.00047 0.00097 

Mild motor impairment due to motor neuron disease 0.10388 0.10103 0.10681 

Moderate motor impairment and mild respiratory problems due to motor neuron disease 0.06744 0.06511 0.06985 

Moderate motor impairment and moderate respiratory problems due to motor neuron disease 0.01302 0.01199 0.01413 

Moderate motor impairment and severe respiratory problems due to motor neuron disease 0.00412 0.00356 0.00477 

Moderate motor impairment due to motor neuron disease 0.20136 0.19760 0.20518 

Severe motor impairment and mild respiratory problems due to motor neuron disease 0.06902 0.06666 0.07146 

Severe motor impairment and moderate respiratory problems due to motor neuron disease 0.02000 0.01872 0.02137 

Severe motor impairment and severe respiratory problems due to motor neuron disease 0.01062 0.00969 0.01163 

Severe motor impairment due to motor neuron disease 0.15037 0.14702 0.15378 

Mild respiratory problems due to motor neuron disease 0.00643 0.00571 0.00723 

Moderate respiratory problems due to motor neuron disease 0.00044 0.00028 0.00069 

Severe respiratory problems due to motor neuron disease 0.00005 0.00001 0.00017 

Asymptomatic, but worry about diagnosis due to motor neuron disease 0.03738 0.03562 0.03921 

 

To determine disability due to these sequelae, GBD used the standard multiplicative aggregation formula. The 

following table provides description and disability weights assigned to the sequelae as appropriate. 

Symptom group Severity level Lay description Disability weights (95%) 

Respiratory problems Asymptomatic   

Respiratory problems Mild Has cough and shortness of breath after heavy physical 

activity, but is able to walk long distances and climb 

stairs. 

0.019 (0.011–0.033) 

Respiratory problems Moderate Has cough, wheezing, and shortness of breath, even 
after light physical activity. The person feels tired and 

0.225 (0.153–0.31) 
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can walk only short distances or climb only a few 

stairs. 

Respiratory problems Severe Has cough, wheezing, and shortness of breath all the 
time. The person has great difficulty walking even 

short distances or climbing any stairs, feels tired when 

at rest, and is anxious. 

0.408 (0.273–0.556) 

Motor impairment Asymptomatic   

Motor impairment Mild Has some difficulty in moving around but is able to 

walk without help. 

0.01 (0.005–0.019) 

Motor impairment Moderate Has some difficulty in moving around and difficulty in 
lifting and holding objects, dressing, and sitting 

upright, but is able to walk without help. 

0.061 (0.04–0.089) 

Motor impairment Severe Is unable to move around without help, and is not able 

to lift or hold objects, get dressed, or sit upright.  

0.402 (0.268–0.545) 

Speech problems No   

Speech problems Yes Has difficulty speaking, and others find it difficult to 

understand.  

0.051 (0.032–0.078) 

Asymptomatic, but 

worry 

Yes Has a disease diagnosis that causes some worry but 

minimal interference with daily activities. 

0.012 (0.006–0.023) 

 

D10. Encephalitis 

 

The steps in the estimation of non-fatal encephalitis burden are shown in the following flowchart:  

 

Data 

 

Population representative surveys, studies and reports were included for the morbidity estimation of 

encephalitis. 

 

Modelling strategy 

 

Non-fatal outcomes were modelled using a combination of custom models and DisMod-MR 2.1. First, the 

overall incidence and prevalence of encephalitis were modelled to estimate the short-term morbidity due to 

acute infection. This DisMod model had a set duration (1/remission) of three weeks. Caps on excess mortality 

for ages 10-50 were imposed. The function in DisMod-MR 2.1 was used to pull in cause-specific mortality rate 

(CSMR) data from the CODEm and CODcorrect analyses and match with incidence data points for the same 

geography. The excess mortality rate was calculated to estimate priors by dividing CSMR by prevalence, 

calculated from remission and incidence. To help inform trends where data is lacking, a binary country-level 

covariate were applied at the subnational and country level. Incidence input data points were outliered with zero 

cases that were dragging down final estimates. In place of traditional DisMod-MR, Ordinary differential 

equations solver (ODE solver) was used to improve the efficiency of time and accuracy of estimations. 
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Country-level covariates, parameter, beta and exponentiated beta values for the model 

 
Country-level covariate Parameter Beta  Exponentiated beta 

Japanese Encephalitis endemic area Incidence 0.052 (0.0041–0.097) 1.05 (1.00–1.10) 

LDI (log transformed) Excess mortality -0.3 (-0.31 to -0.29) 0.74 (0.73–0.75) 

DTP3 Coverage Incidence -1.56 (-1.68 to -1.45) 0.21 (0.19–0.23) 

 

Sequelae splits 

 

First the long-term sequelae were split among survivors of acute infection. The acute phase survivors were 

calculated by applying the excess mortality (calculated by the acute meningitis DisMod model) to the incidence 

of each aetiology (excess mortality was converted to case fatality rate by e (-excess mortality x 1/ (excess mortality + remission)). 

The survivors were then subject to long-term sequelae by applying the post-discharge proportions of health 

consequences calculated by a meta-analysis by Edmond and colleagues.1 The ratio of acute encephalitis 

survivors was calculated that result in a major long-term impairment, and the ratio of minor impairments to 

major impairments, based off a regression of log-transformed GDP and ratio values from Edmonds and 

colleagues.1 The regression is shown below: 

 

y = -0.33590 ln(GDP) + 1.15230 

 

A similar pattern of health outcomes was assumed for encephalitis infection survivors as with other bacterial 

meningitis survivors (except hearing loss, as no evidence was found for hearing loss as a consequence of 

encephalitis infection). These two ratios were used to calculate the proportions of survivors who contract a 

long-term minor impairment and those who contract a long-term major impairment. The proportion with major 

impairments were further split into specific major impairments, which were grouped into vision loss, moderate 

to severe cognitive impairments, and epilepsy. 

 

The calculated incidence of long-term sequelae was then converted to prevalence by two different approaches. 

For the sequelae not associated with excess mortality, which were vision loss, intellectual disability, motor 

impairment, and behavioural problems, the incidence of each age was cumulatively added up to the subsequent 

age (assuming half-cycle) to construct prevalence at each age. If the sequela is associated with excess mortality 

(epilepsy and moderate-to-severe cognitive impairments), the calculated incidence was used as an input the 

ODE solver, together with the corresponding mortality parameters (excess mortality data from the epilepsy 

envelope DisMod model, and standardised mortality ratio data from a neonatal encephalopathy meta-analysis, 

converted to excess mortality using all-cause mortality estimates) to estimate the prevalence. Vision loss and 

epilepsy estimates were squeezed and severity split centrally. 

 

Disability weights 

 

The basis of the GBD disability weight survey assessments is lay descriptions of sequelae highlighting major 

functional consequences and symptoms. The lay descriptions and disability weights for sequelae associated with 

encephalitis are shown below. 

 
Severity split Lay description Disability weights 

(95% CI) 

Mild behavior problems This person is hyperactive and has difficulty concentrating, remembering 
things, and completing tasks. 

0.045 (0.028-0.066) 

Moderate motor impairment This person has some difficulty in moving around, and difficulty in lifting 

and holding objects, dressing and sitting upright, but is able to walk 

without help. 

0.061 (0.04-0.089) 

Moderate motor plus cognitive 

impairments 

This person has some difficulty in moving around, holding objects, 

dressing and sitting upright, but can walk without help. This person has 

low intelligence and is slow in learning to speak and to do simple tasks. 

0.203 (0.134-0.29) 

Long-term mild motor 
impairment 

This person has some difficulty in moving around but is able to walk 
without help. 

0.01 (0.005-0.02) 

Borderline intellectual 

disability 

This person is slow in learning at school. As an adult, the person has some 

difficulty doing complex or unfamiliar tasks but otherwise functions 
independently. 

0.011 (0.005-0.02) 

Severe motor impairment This person is unable to move around without help, and is not able to lift 
or hold objects, get dressed, or sit upright. 

0.402 (0.268-0.545) 

Epilepsy (combined DW) NA 

Blindness Is completely blind, which causes great difficulty in some daily activities, 

worry and anxiety, and great difficulty going outside the home without 
assistance. 

0.187 (0.124-0.26) 
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Acute encephalitis This person has a high fever and pain, and feels very weak, which causes 

great difficulty with daily activities. 

0.133 (0.088-0.19) 

Mild intellectual disability This person has low intelligence and is slow in learning at school. As an 
adult, the person can live independently but often needs help to raise 

children 

and can only work at simple supervised jobs. 

0.043 (0.026-0.065) 

Monocular distance vision loss This person is blind in one eye and has difficulty judging distances. 0.017 (0.009-0.029) 

Mild motor plus cognitive 
impairments 

This person has some difficulty in moving around but is able to walk 
without help. The person is slow in learning at school. As an adult, the 

person has some difficulty doing complex or unfamiliar tasks but 

otherwise functions independently. 

0.031 (0.018-0.05) 

Severe motor plus cognitive 

impairments 

This person cannot move around without help, and cannot lift or hold 

objects, get dressed or sit upright. The person also has very low 
intelligence, speaks few words, and needs constant supervision and help 

with all daily activities. 

0.542 (0.37-0.702) 

 
Reference 

 

1. Edmond, K. et al. Global and regional risk of disabling sequelae from bacterial meningitis: a systematic 

review and meta-analysis. Lancet Infectious Diseases 2010; 10, 317–32. 

 

D9. Meningitis 

 

The steps in the estimation of non-fatal meningitis burden are shown in the following flowchart: 

 

 

Data 

 

Population representative surveys, studies and reports were included for the morbidity estimation of meningitis. 

 

Modelling strategy 

 

Non-fatal outcomes were modelled using a combination of custom models, DisMod-MR 2.1, and the use of an 

ordinary differential equations solver (ODE) for more timely and accurate estimates.  

 

First, the overall incidence and prevalence of bacterial meningitis were modelled to estimate the short-term 

morbidity due to acute infection. This DisMod model had a set duration (1/remission) of four weeks with a 

range ±2 weeks. GBD also imposed caps on excess mortality for neonates and elders based on the highest 

excess mortality estimates from the previous GBD estimates. The function in DisMod- MR 2.1 was used to pull 

in cause-specific mortality rate (CSMR) data from the CODEm and CODcorrect analyses and match with 

prevalence data points for the same geography. Excess mortality rate was calculated to estimate priors by 

dividing CSMR by prevalence, calculated from remission and incidence. To help inform trends where data was 

lacking, a country-level covariate were applied for proportion of the population at the subnational and country 

levels. Incidence input data points were outlired with zero cases that were pulling down final estimates. Betas 
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and exponentiated values (which can be interpreted as an odd ratio) are shown in the tables below for study-

level covariates and country-level covariates. 

 
Country-level covariate Parameter Beta Exponentiated beta 

Hib3 vaccine coverage Incidence -0.61 (-0.66 to -0.57) 0.54 (0.52–0.57) 

Meningitis belt Incidence 1.93 (1.76–2.00) 6.88 (5.84–7.37) 

MenAfriVac initiative Incidence -1.01 (-2 to -0.019) 0.36 (0.14–0.98) 

LDI Excess mortality -0.00051 (-0.0013 to -0.000058) 1.00 (1.00–1.00) 

Healthcare Access and 

Quality index 

Excess mortality -0.027 (-0.028 to - 0.027) 0.97 (0.97–0.97) 

 

Incidence and prevalence of bacterial meningitis were split into four aetiologies (pneumococcal, 

meningococcal, H influenzae type B, and other bacterial meningitis) using four proportion models run in 

DisMod-MR 2.1. Results from these models were squeezed to sum to 1 at the draw level for each location, year, 

age, and sex. A Hib3 vaccine coverage covariate was applied to the H. influenzae type B proportion model, the 

proportion of the population living in the meningitis belt covariate and the proportion of the population living in 

areas covered by the MenAfriVac initiative (meningitis meningococcal type A) to the meningococcal 

meningitis proportion model, and a PCV3 coverage covariate to the pneumococcal meningitis model.   

 

Data for viral meningitis was only available from hospital data, and not from population studies, so incidence 

and prevalence of viral meningitis were extrapolated from bacterial meningitis incidence by applying age- and 

sex-specific ratios between bacterial and viral cases from hospital data. In addition to short-term sequelae as a 

result of acute bacterial and viral meningitis, the long-term outcomes were modelled from bacterial meningitis 

infection.  

 

Sequelae splits 

 

GBD first split the long-term sequelae among survivors of acute infection. The acute-phase survivors was 

calculated by applying the excess mortality (calculated by the acute meningitis DisMod model) to the incidence 

of each aetiology (excess mortality was converted to case fatality rate by e (-excess mortality x 1/(excess mortality + remission)). 

The survivors were then subject for long-term sequelae by applying the post-discharge proportions of health 

consequences calculated by a meta-analysis by Edmond and colleagues.1 The ratio was calculated of acute 

meningitis survivors that experience major long-term impairments for all aetiologies, and the ratio of minor 

impairments to major impairments for pneumococcal meningitis versus all other aetiologies (because 

pneumococcal meningitis showed significantly higher risk of morbidity than other aetiologies). This ratio was 

based off a regression of log-transformed GDP and ratio values from Edmonds and colleagues.1 The regression 

is shown below: 

y = -0.33590 ln(GDP) + 1.15230 

 

These two ratios were used to calculate the proportions of survivors who contract a long-term minor impairment 

and those who contract a long-term major impairment. The proportion with major impairments were further 

split (again using pooled proportions from Edmond and colleagues1) into specific major impairments, which 

were grouped into vision loss, hearing loss, moderate-to-severe cognitive impairments, and epilepsy. 

 

The calculated incidence of long-term sequelae was then converted to prevalence by two different 

approaches. For the sequelae not associated with excess mortality, which were vision loss, hearing loss, 

intellectual disability, motor impairment, and behavioural problems, the incidence of each age was 

cumulatively added up to the subsequent age (assuming half-cycle) to construct prevalence at each age.  

If the sequela is associated with excess mortality (epilepsy and moderate-to-severe cognitive 

impairments), the calculated incidence was used as in input to the ODE solver together with the 

corresponding mortality parameters (excess mortality data from the epilepsy envelope DisMod model, 

and standardised mortality ratio data from a neonatal encephalopathy meta-analysis, converted to excess 

mortality using all-cause mortality estimates) to estimate the prevalence. Vision loss, hearing loss, and 

epilepsy estimates were squeezed and severity split centrally. 

 

Disability weights 

 

The basis of the GBD disability weight survey assessments are lay descriptions of sequelae highlighting 

major functional consequences and symptoms. The lay descriptions and disability weights for sequelae 

associated with each aetiology are shown below. 
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Severity split Lay description Disability weights 

(95% CI) 

Mild behaviour problems This person is hyperactive and has difficulty concentrating, remembering 

things, and completing tasks. 

0.045 (0.028-0.066) 

Mild hearing loss This person has great difficulty hearing and understanding another person 

talking in a noisy place (for example, on an urban street). 

0.01 (0.004-0.019) 

Mild hearing loss with 

ringing 

This person is unable to hear and understand another person talking, even 

in a quiet place, is unable to take part in a phone conversation. Difficulties 

with communicating and relating to others cause emotional impact at 
times (for example worry or depression). 

0.021 (0.012-0.036) 

Moderate hearing loss This person has great difficulty hearing and understanding another person 

talking in a noisy place (for example, on an urban street), and sometimes 

has annoying ringing in the ears. 

0.027 (0.015-0.042) 

Moderate hearing loss with 

ringing 

This person is unable to hear and understand another person talking, even 

in a quiet place, is unable to take part in a phone conversation. 

Difficulties with communicating and relating to others often cause worry, 
depression, or loneliness. 

0.074 (0.048-0.107) 

Moderately severe hearing 

loss 

Custom DW from hearing loss impairment envelope  

Severe hearing loss This person is unable to hear and understand another person talking, even 

in a quiet place, and unable to take part in a phone conversation. 

Difficulties with communicating and relating to others cause emotional 
impact at times (for example worry or depression). 

0.158 (0.105-0.227) 

Profound hearing loss This person is unable to hear and understand another person talking, even 

in a quiet place, is unable to take part in a phone conversation, and has 
great difficulty hearing anything in any other situation. Difficulties with 

communicating and relating to others often cause worry, depression, or 

loneliness. 

0.204 (0.134-0.288) 

Complete hearing loss This person cannot hear at all in any situation, including even the loudest 

sounds, and cannot communicate verbally or use a phone. Difficulties 

with communicating and relating to others often cause worry, depression, 
or loneliness. 

0.215 (0.144-0.307) 

Severe hearing loss with 

ringing 

This person is unable to hear and understand another person talking, even 

in a quiet place, is unable to take part in a phone conversation, and has 
annoying ringing in the ears for more than 5 minutes at a time, almost 

every day. Difficulties with communicating and relating to others cause 

emotional impact at times (for example worry or depression). 

0.261 (0.175-0.36) 

Profound hearing loss with 

ringing 

This person is unable to hear and understand another person, even in a 

quiet place, is unable to take part in a phone conversation, has great 

difficulty hearing anything in any other situation, and has annoying 
ringing in the ears for more than 5 minutes at a time, several times a day. 

Difficulties with communicating and relating to others often cause worry, 

depression, or loneliness. 

0.277 (0.182-0.387) 

Complete hearing loss with 

ringing 

This person cannot hear at all in any situation, including even the loudest 

sounds, and cannot communicate verbally or use a phone, and has very 

annoying ringing in the ears for more than half of the day. Difficulties 
with communicating and relating to others often cause worry, depression, 

or loneliness. 

0.316 (0.212-0.435) 

Moderate motor impairment This person has some difficulty in moving around, and difficulty in lifting 
and holding objects, dressing and sitting upright, but is able to walk 

without help. 

0.061 (0.04-0.089) 

Moderate motor plus 
cognitive impairments 

This person has some difficulty in moving around, holding objects, 
dressing and sitting upright, but can walk without help. This person has 

low intelligence and is slow in learning to speak and to do simple tasks. 

0.203 (0.134-0.29) 

Long-term mild motor 
impairment 

This person has some difficulty in moving around but is able to walk 
without help. 

0.01 (0.005-0.02) 

Borderline intellectual 
disability 

This person is slow in learning at school. As an adult, the person has some 
difficulty doing complex or unfamiliar tasks but otherwise functions 

independently. 

0.011 (0.005-0.02) 

Severe motor impairment This person is unable to move around without help, and is not able to lift 
or hold objects, get dressed or sit upright. 

0.402 (0.268-0.545) 

Epilepsy (combined DW) NA 

Blindness Is completely blind, which causes great difficulty in some daily activities, 
worry and anxiety, and great difficulty going outside the home without 

assistance. 

0.187 (0.124-0.26) 

Severe acute episode of 
infectious disease 

This person has a high fever and pain, and feels very weak, which causes 
great difficulty with daily activities. 

0.133 (0.088-0.19) 

Mild intellectual disability This person has low intelligence and is slow in learning at school. As an 

adult, the person can live independently, but often needs help to raise 
children and can only work at simple supervised jobs. 

0.043 (0.026-0.065) 

Monocular distance vision 

loss 

This person is blind in one eye and has difficulty judging distances. 0.017 (0.009-0.029) 
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Mild motor plus cognitive 

impairments 

This person has some difficulty in moving around but is able to walk 

without help. The person is slow in learning at school. As an adult, the 
person has some difficulty doing complex or unfamiliar tasks but 

otherwise functions independently. 

0.031 (0.018-0.05) 

Severe motor plus cognitive 
impairments 

This person cannot move around without help, and cannot lift or hold 
objects, get dressed or sit upright. The person also has very low 

intelligence, speaks few words, and needs constant supervision and help 

with all daily activities. 

0.542 (0.37-0.702) 

 

Reference 

 

1. Edmond, K. et al. Global and regional risk of disabling sequelae from bacterial meningitis: a systematic 

review and meta-analysis. Lancet Infectious Diseases 2010; 10, 317–32. 

 
D11. Tetanus 

 

The steps in the estimation of non-fatal tetanus burden are shown in the following flowchart:

Input data

Process

Results

Database

Disability weights

Nonfatal

Burden estimation

Cause of death

Covariates
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CFR data from the 
literature

Nonfatal 
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DisMod-MR model

CFR by 
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adjusted 

YLDs

DALYs
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Prevalence of 

severe tetanus
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for each sequela

Unadjusted 
YLD by 
sequela
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cases  are severe 

Location-level 
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HAQI
CoDCorrect deaths

Incidence = death rate / 
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age/sex for 
tetanus

Incidence of 
survival by 

location/year/
age/sex for 

neonatal tetanus
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moderate/severe 
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literature
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impairment due to 
neonatal tetanus

Prevalence by 
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sex for moderate/
severe impairment 

due to neonatal 
tetanus
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MR-BRT sex-specific 
model

DisMod-MR age-
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Data 

 

The tetanus nonfatal model requires case fatality ratio (CFR) data obtained from systematic reviews of the 

literature, and the mortality rate outputs from the GBD 2019 tetanus mortality model. 

 

All extracted tetanus CFR data that was not sex- and age-specific (i.e. the data that was reflective of both sexes 

combined and/or age ranges greater than a 20-year start and end difference) were split into sex and age-specific 

groups prior to use in modelling. The ratios used to make the sex splits were calculated using MR-BRT, the 

meta-regression Bayesian tool. The sex adjustment factor calculated for use in modeling was 0.96 (0.79 to 

1.15).  

 
Data input Reference or alternative case definition Beta Coefficient, Log (95% CI) Adjustment factor* 

Sex  N/A ‐0.045 (‐0.233 to 0.142) 0.96 

*Adjustment factor is the transformed Beta coefficient in normal space, and can be interpreted as the factor by which the alternative case definition is adjusted 

to reflect what it would have been if measured as the reference. 

 

Severity splits and disability weights 

 

All of the tetanus cases estimated are assumed to be severe, acute infections. Table below presents our lay 

description of severe tetanus in addition to the disability weights applied. For neonatal tetanus impairments,  

the distribution matches the distribution of neonatal encephalopathy. 
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Severity level  Lay description Disability weights (95% CI) 

Severe 

 

Has a high fever and pain, and feels very weak, 

which causes great difficulty with daily activities. 

 0.133 (0.088‐0.19) 

 

 

Modelling strategy 

 

DisMod-MR was utilized to produce location-, year-, age-, and sex-specific tetanus CFR estimates from sex-

and age-specific input data, following the age- and sex-splitting process. In the model, the Healthcare Access 

and Quality (HAQ) Index was used as a location-level covariate, enforcing a directional prior so location with 

increasing HAQ are predicted to have a reduced tetanus CFR. As a result, CFR model estimates now better 

reflect the expected relationship between HAQ and CFR across geographies and years, particularly in data-

sparse locations. Additionally, DisMod model parameters were adjusted to decrease the influence of 

hierarchical priors in the DisMod geographic cascade. These adjustments allow the model to more closely track 

CFR data in locations where data is present and tend to result in broader uncertainty in CFR estimates for 

locations where no data is available.  

 

Incidence rates were then calculated using estimates of tetanus CFR and GBD 2019 tetanus mortality estimates. 

Tetanus mortality rates were produced using CODEm separately for all combinations of children under one year 

of age and those ages one to eighty, data‐rich and non‐data‐rich countries, and for males and females. Using 

these results, incidence was calculated as the quotient of mortality rate by CFR. From tetanus incidence and 

tetanus case duration sourced from a prior literature review, tetanus prevalence was computed. These 

calculations were completed at the draw level for each of 1000 draws, then summarized using the mean of 

draws and a 95% uncertainty interval (the 2.5th and 97.5th quantile of all draws). 

 

Summary of covariates used in the tetanus CFR DisMod‐MR meta‐regression model 

 
Covariate Type Parameter Exponentiated beta (95% CI) 

Healthcare Access and Quality Index Country‐level Case fatality ratio 0.85 (0.75 — 0.97) 

 

To estimate mild and moderate impairment due to neonatal tetanus, the incidence of survival was first computed: 

 

𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 𝑜𝑓 𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 = 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 (1 ∗ 𝐶𝑅𝐹) 

 

To appropriately proportion impairments as either mild or moderate-to-severe, a systematic literature review of 

the proportion in cases was leveraged. These splits were applied to the incidence of survival to calculate the 

incidence of survival from neonatal tetanus with mild impairment and with moderate-to-severe impairment. 

These estimates were each then used as input data sets for separate DisMod-MR models, which in turn 

produced draw-level estimates of the prevalence of mild or moderate-to-severe impairment due to neonatal 

tetanus for all ages, sexes, years, and locations. 

 

  



39 

 

D12. Traumatic brain injury and spinal cord injury 

  

The steps in the estimation of non-fatal injuries burden are shown in the following flowchart: 

 
 

Data 

 

Representative population-based surveys and studies reports incidence of injuries were included in the analysis. 

Consistent with modelling strategies for other causes in the GBD framework, injuries estimation also utilised 

hospital and clinic diagnosis codes for locations where these data were available. 

 

Modelling strategy 

 

Each external cause of injury is modelled in DisMod-MR 2.1. Some details on the modelling strategy are 

provided below, and more information on the overall injuries modelling process including injury-specific 

details is described in the methods appendix of the GBD 2019 publication on non-fatal outcomes (Lancet 

2020; 396: 1204–22). 

 

Cause-of-injury incidence 

 

The majority of incidence data exist at the external cause-of-injury level. Incidence for cause-of-injury 

categories was modelled using DisMod-MR 2.1. Multiple datasets from hospital and emergency/outpatient 

departments, insurance claims, and surveys were fed into these incidence models. GBD separately estimated 

two categories of injury severity: inpatient and outpatient injuries. 

 

Excess mortality modelling 

 

Priors on excess mortality rate (EMR) were estimated in DisMod by matching prevalence data points 

with their corresponding CSMR values within the same age, sex, year, location (by dividing CSMR by 

prevalence). For short duration conditions like injuries (remission > 1), the corresponding prevalence was 

derived by running an initial model and then applying the same CSMR/prevalence method. However, for 

many causes, DisMod estimated a rather unrealistic pattern of EMR compared to an expected pattern of 

decreasing EMR with greater access to quality health care. Such unexpected patterns often signal 

inconsistencies between CSMR estimates and the measures of prevalence and/or incidence.  

 

In effort to provide greater guidance to DisMod on the expected pattern of EMR, EMR data generated in the 

previous round were modeled using the MR-BRT approach by age and sex with a prior on Healthcare Access  
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and Quality (HAQ) Index having a negative coefficient. Results from MR-BRT were then predicted for each 

location year, sex and for ages 0, 10, 20 … 100. GBD included HAQ index as a country-level covariate to 

inform EMR with a mean and standard deviation produced from MR-BRT. However, even without this setting 

DisMod would tend to estimate a coefficient that was consistent with the MR-BRT analysis.  

 

Adjusting data 

 

The adjustment of data via study-level covariates was performed out of DisMod using adjustment 

coefficients derived from a network analysis on World Health Survey data on road injuries. First,  

ST-GPR was used to estimate the proportion of people who were able to receive care for their injuries 

using the ratio of inviduals who received inpatient or outpatient care to individuals who were injured 

overall. These proportions allowed us to adjust data to the definition “injuries that received inpatient or 

outpatient care.” Then, MR-BRT was used to crosswalk “received care” incidence and outpatient 

incidence both to inpatient incidence, using inpatient versus outpatient incidence comparisons from the 

United States National Hospital Ambulatory Medical Care Survey. 

 

Fatal discontinuities 

 

Due to the sporadic nature of the incidence of injuries and a lack of time trend that results from fatal 

discontinuities, DisMod-MR 2.1 was not used to model incidence due to fatal discontinuities, including 

state actor violence, exposure to forces of nature (i.e., natural disaster), and conflict and terrorism. 

Instead, incidence-to-mortality ratios were averaged over super-region, year, and sex to limit the 

variability in the ratios applied to fatal discontinuities.  

 

Nature-of-injury category hierarchy 

 

Multiple injuries can occur in one individual. A nature-of-injuries severity hierarchy was developed to establish 

a one-to-one relationship between cause-of-injury and nature-of-injury category. This means that in the case of 

multiple injuries the nature-of-injury category that was likely to be responsible for the largest burden was 

selected. To construct the hierarchy, GBD used data from the pooled dataset of follow-up studies.1–6 The output 

of the regression of logit-transformed disability weights on nature-of-injury category and individual 

characteristics of the follow-up studies were used to calculate the mean long-term disability attributable to each 

nature-of-injury category. The ranking of nature-of-injury categories by their long-term disability weights 

formed the basis of our severity hierarchy. Hierarchies were developed separately, for injuries warranting 

inpatient care and injuries warranting other health care. 

 

Cause-nature matrices 

 

Because injury disability is linked more to the nature of injury than to the cause of injury, matrices were 

generated to map the proportion of each cause-of-injury category that results in a particular nature-of-

injury category. These matrices are based on a collection of dual-coded (i.e., both cause-of-injury and 

nature-of-injury coded) hospital and emergency department datasets. GBD applied our nature-of-injury 

severity hierarchy above to assert that every observation had one cause of injury and one nature of injury. 

 

Dirichlet models were used to estimate all of the nature-of-injury category proportions for one cause of 

injury simultaneously. These models allow for consistent borrowing of information across age, sex, 

inpatient/outpatient, and high/low-income countries and assert that the nature-of-injury proportions 

within a cause-of-injury category must add up to 1. One cause-nature matrix was created for each 

combination of injury warranting hospital admission versus injury warranting other health care, 

high/low-income countries, male/female, and age category. Applying these matrices to our cause-of-

injury incidence from DisMod-MR, cases of injury warranting hospital admission and incidence of injury 

warranting other health care by cause and nature of injury were produced. 

 

Probability of permanent health loss 

 

Disability due to injury was assumed to affect all cases in the short term with a proportion having long-term 

(permanent) outcomes. The probability of long-term outcomes was needed to estimate the incidence and 

subsequently the prevalence of cases with permanent health loss. In the conceptual model, individuals who 

suffer a non-fatal injury will, in the long-term, return to either full or partial health. If one-year post-injury 

patients return to a health status with more disability than their pre-injury health status, patients are assumed  
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to have permanent disability from their injury. The difference between the pre-injury health states and health 

status one year after injury is assumed to be their permanent level of injury-related disability. GBD assessed the 

probability of developing permanent health loss using the pooled dataset of follow-up studies1–6 and the Medical 

Expenditure Panel Survey7 that were also used to generate the nature-of-injury hierarchy. To assess the 

probability of permanent health loss, GBD estimated the effects using a logit-linear mixed effects regression: 

 
𝐿𝑜𝑔𝑖𝑡(𝐷𝑊)𝑖𝑚 =  𝛼 +  𝛽(𝑖𝑛𝑗𝑢𝑟𝑖𝑒𝑠𝑖𝑚) + 𝛽(𝑛𝑒𝑣𝑒𝑟 𝑖𝑛𝑗𝑢𝑟𝑒𝑑𝑖) + 𝛽(𝑛𝑒𝑣𝑒𝑟 𝑖𝑛𝑗𝑢𝑟𝑒𝑑𝑖 ∗ 𝑎𝑔𝑒𝑖) + 𝛽(𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 𝑜𝑓 𝑝𝑒𝑙𝑣𝑖𝑠𝑖)

+ 𝛽(𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 𝑜𝑓 𝑝𝑒𝑙𝑣𝑖𝑠𝑖 ∗ 𝑎𝑔𝑒𝑖) + 𝛽(𝑝𝑜𝑖𝑠𝑜𝑛𝑖𝑛𝑔𝑖 ∗ 𝑎𝑔𝑒𝑖) + 𝛽(𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝑡𝑜 𝑠𝑒𝑣𝑒𝑟𝑒 𝑇𝐵𝐼𝑖 ∗ 𝑎𝑔𝑒𝑖) + 𝑅𝐸𝑐

+ 𝑅𝐸𝑖   

 

where dummies were included for all the nature-of-injury categories (𝑖𝑛𝑗𝑢𝑟𝑖𝑒𝑠𝑖𝑚), with the reference category 

being no injury (from MEPS dataset). GBD also included a dummy for never injured prior to the current injury, 

age, interactions between age and never injured status, and interactions with long-term nature-of-injury 

categories (moderate/severe traumatic brain injuries) that were found to significantly vary with age. In notation, 

subscript m refers to patient-reported outcome measure, i refers to individual, and c refers to country. Random 

effects (RE) were included to control for variation between countries and individuals.  

 

After predicting overall disability at one-year follow-up, we estimated a counterfactual by setting all 

observations to “no injury,” the reference group for 𝛽(𝑖𝑛𝑗𝑢𝑟𝑖𝑒𝑠𝑖𝑚) in the model. The disability attributable to 

the nature of injury at one year was assumed to be the difference between our counterfactual of no injury and 

predicted disability with injury. The probability of treated long-term outcomes was estimated via the ratio of 

this attributable disability relative to the long-term disability weight for that injury. 

 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑙𝑜𝑛𝑔 − 𝑡𝑒𝑟𝑚 𝑑𝑖𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝑤𝑖𝑡ℎ 𝑖𝑛𝑗𝑢𝑟𝑦 𝑑𝑖𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑖𝑚
− 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑡𝑢𝑎𝑙 𝑑𝑖𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑖𝑚

𝐷𝑊𝑚
 

 

GBD developed estimates of the probability of permanent health loss by nature-of-injury category, injury 

severity level (injuries warranting inpatient admission and injuries warranting other health care), and age. 

Moderate-severe TBI and spinal cord lesions only have inpatient injury long-term probabilities. 

 

Disability associated with treated and untreated cases 

 

For many nature-of-injury categories, GBD has a separate disability weight for treated and for untreated cases. 

To estimate the percent treated for injuries in a given location-year, the HAQ Index was used with the same 

strategy described for the probability of permanent health loss.  

 

Duration of short-term health loss 

 

To determine the duration for treated cases of short-term injury, we analysed patient responses from two Dutch 

Injury Surveillance System follow-up studies conducted from 2001–2003 and 2007–2009.8 These studies 

collected data at 2.5, 5, 9, and 24 months post-injury to determine whether injury patients were still 

experiencing problems due to their injury. If not, the patients were asked how many days they had experienced 

problems. The injury patients that still reported having problems one year after the injury were assumed to be 

captured in our analysis of permanent disability. The duration for treated cases of short-term injury was 

estimated for injuries warranting inpatient admission and injuries warranting other health care separately. The 

estimates were supplemented by expert-driven estimates of short-term duration for nature-of-injury categories 

that did not appear in the Dutch dataset and untreated injuries. 

 

Calculation of prevalence from incidence data – short-term injury 

 

For short-term injury outcomes, which were assumed to be less than one year in duration, the prevalence for 

each cause-of-injury/nature-of-injury/severity-level grouping was approximated by the incidence for that 

grouping multiplied by the associated nature-of-injury/severity-level-specific duration.  

 

Calculation of prevalence from incidence data – permanent health loss 

 

For permanent health loss, GBD assumed no remission and thus integrated incidence over time to arrive at 

prevalence estimates. DisMod ODE (i.e., the “engine” of DisMod-MR 2.1) was used to carry out this 

integration for each combination of cause of injury and nature of injury by country, year, and sex. For this step 

we used random effects meta-analysis to pool data on standardised mortality ratios derived from literature 

reviews. 
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D13. Other non-communicable neurological disorders 

 

In addition to the non-communicable neurological disorders described above, there are many diverse types of 

non-communicable neurological disorders with a range of severities and associated sequelae. Because these 

non-communicable neurological disorders are diverse in their underlying causes and risk factors as well as in 

their associated health outcomes, modelling them together in a DisMod-MR model would not produce reliable 

estimates of prevalence or excess mortality. Instead, GBD calculated the YLDs caused by neurological 

disorders directly using a YLD/YLL ratio. 

 

GBD calculated the ratio of YLDs to YLLs across the specified neurological disorders for which non-fatal 

outcomes were modelled, using YLL estimates from the GBD 2019 cause of death (CoD) analysis. This 

YLD/YLL ratio then multiplied by the YLL estimates for other non-communicable neurological disorders from 

the GBD 2019 CoD analysis, providing with an estimate of the YLDs associated with other non-communicable 

neurological disorders. 
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E. Estimation of deaths from neurological disorders 

 

The major data inputs used in GBD for estimating deaths from neurological disorders in India were Sample 

Registration System cause of death data, Medical Certification of Cause of Death data, and other verbal autopsy 

studies. 

 

Deaths for most neurological disorders were generated using the cause of death ensemble modelling (CODEm). 

CODEm is the framework used to model most cause-specific death rates in the GBD. It relies on four key 

components. First, all available data are identified and gathered to be used in the modelling process. Though the 

data may vary in quality, they all contain some signal of the true epidemiological process. Second, a diverse set 

of plausible models are developed to capture well-documented associations in the estimates. Using a wide 

variety of individual models to create an ensemble predictive model has been shown to outperform techniques 

using only a single model both in cause of death estimation and in more general prediction applications. Third, 

the out-of-sample predictive validity is assessed for all individual models, which are then ranked for use in the 

ensemble modelling stage. Finally, differently weighted combinations of individual models are evaluated to 

select the ensemble model with the highest out-of-sample predictive validity. 

 

As many factors covary with a particular cause of death, a large range of plausible statistical models are 

developed for each neurological disorder. For the CODEm framework, four families of statistical models are 

developed using covariates. These are mixed effects linear models of the natural log of the death rate, mixed 

effects linear models of the logit of the cause fraction, spatiotemporal Gaussian process regression (ST-GPR) 

models of the log of the death rate, and ST-GPR of the logit of the cause fraction. All plausible relationships 

between covariates and relevant cause are identified, and all possible permutations of selected covariates are 

tested in linear models where the logit cause fraction or log death rate is the response variable. Because all 

permutations of covariates, multicollinearity are tested between covariates may produce implausible signs on 

coefficients or unstable coefficients. All models where the sign on the coefficient is in the direction expected 

based on the literature and where the coefficient is statistically significant at p <0.05 are retained. For both 

cause fractions and death rates covariate selection is performed and then create both mixed effects only and ST 

models for each set of covariates. Sum of the sampling variance, non-sampling variance, and garbage code 

redistribution variance for each data point are included in CODEm.  

 

The performance of all component models and ensembles is evaluated using out-of-sample predictive validity 

tests. Thirty percent of the data are excluded from the initial model fits, and half of that (15% of total) is used to 

evaluate and rank component models and then build ensembles. Data are held out from the analysis using the 

pattern of missingness for each cause in the cause of death database. Out-of-sample predictive validity testing is 

repeated until stable model results have been obtained. The out-of-sample performance tests include the root 

mean squared error of the log of the cause-specific death rate, the direction of the trend in the prediction 

compared to the data, and the validity of the 95% uncertainty interval. For every model, the in-sample root 

mean squared error of the log death rates (RMSE) and the out-of-sample performance in the 15% of data not 

used in the model building process. After component models are ranked on their out-of-sample predictive 

validity they are weighted based on their ranking and each component model contributes a portion to the final 

estimate. How much each sub model contributes is a function of its relative ranking as well as the value of psi 

chosen, which dictates that distribution of rankings. 

 

Using the second half of the holdout data (15% of total), the differently weighted ensembles and different 

values of psi are tested using the same predictive validity metrics as the component models. For every model, 

the in-sample RMSE and the out-of-sample performance in the 15% of data not used in the model building 

process. The ensemble with the best average trend and RMSE is chosen as the final ensemble weighting 

scheme. 

 

After a model weighting scheme has been chosen, each model contributes a number of draws proportional to its 

weight such that 1,000 draws are created. The mean of the draws is used as the final estimate for the CODEm 

process and 95% UI are created from the 0.025 and 0.975 quantiles of the draws. The final assessment of 

ensemble model performance is the validity of the UIs; ideally, the 95% UI for a model would capture 95% of 

the data out-of-sample. Higher coverage suggests that UIs are too large and lower than 95% suggest UIs are too 

narrow. 

 

For certain causes of death, such as Alzheimer’s diseases and other dementias and Parkinson’s disease, 

mortality rates reported in vital registration systems are impossible to reconcile with the observed trends in 

disease prevalence and excess mortality. To address this bias in cause of death (CoD) data, customised 

modelling approaches are used to first identify the proportion of all deaths that should be assigned to these 

causes and then determine the GBD causes and garbage groups to which these deaths are being incorrectly 
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assigned. For Parkinson’s disease, excess mortality is first estimated from prevalence and CoD data in countries 

with the highest ratio of cause-specific mortality to prevalence. Then, using DisMod-MR 2, cause-specific 

mortality rates estimated from available prevalence surveys, as well as the estimates of excess mortality rate, are 

applied across countries and over time. This value is divided by the all-cause mortality rate to determine the 

fraction of overall mortality to attribute to each under-coded cause. For Alzheimer’s diseases and other 

dementias, relative risk data from cohort studies were used to calculate total number of excess deaths due to 

dementia, and end-stage disease proportions from linked hospital to death records to subset these deaths to the 

proportion of excess deaths with end-stage conditions, which are attributed to dementia. 

 

The detailed description for estimating deaths for each neurological disorder presented in this paper are 

described below. 

 

E1. Stroke 

 

The approach for estimating deaths from stroke is shown in the following flowchart: 
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Data 

 
Verbal autopsy and vital registration data were used to model cerebrovascular disease (stroke). GBD reassigned 

deaths from verbal autopsy reports for cerebrovascular disease to the parent cardiovascular disease for both 

sexes for those under 20 years of age. GBD outliered non-representative subnational verbal autopsy data points. 

GBD also outliered ICD8, ICD9BTL, and tabulated ICD10 data points which were inconsistent with the rest of 

the data and created implausible time trends. Data points from sources which were implausibly low in all age 

groups and data points that were causing the regional estimates to be improbably high were outliered. 

 

Modelling strategy 

  
A standard CODEm approach was used to model deaths from stroke. The covariates included in the ensemble 

modelling process are listed in the table below.  

 
Covariate Transformation Level Direction 

Summary exposure variable, stroke None 1 1 

Cholesterol (total, mean per capita) None 1 1 

Smoking prevalence None 1 1 

Systolic blood pressure (mmHg) None 1 1 

Mean BMI None 2 1 

Elevation over 1,500 m (proportion) None 2 -1 

Fasting plasma glucose None 2 1 

Outdoor pollution (PM2.5) None 2 1 

Indoor air pollution None 2 1 

Healthcare Access and Quality Index None 2 -1 

Lag distributed income per capita (I$) Log 3 -1 
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Summary exposure value, omega-3  None  3 1 

Summary exposure value, fruits  None 3 1 

Summary exposure value, vegetables  None 3 1 

Summary exposure value, nuts and seeds  None 3 1 

Pulses/legumes (kcal/capita, unadjusted) None 3 -1 

Summary exposure value, PUFA adjusted (percent) None 3 1 

Alcohol (litres per capita) None 3 1 

Trans fatty acid None 3 1 

 

E2. Epilepsy 

 

The approach for estimating deaths from idiopathic epilepsy is shown in the following flowchart: 
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Data  

   
For estimating deaths from epilepsy vital registration and verbal autopsy data were included. Data points were 

excluded if they were implausibly high or low relative to global or regional patterns, substantially inconsistent 

with established age or temporal patterns, or significantly inconsistent with other data sources from the same 

locations or locations with similar characteristics (ie, Socio-demographic index). 

 

Modelling strategy 

 

The standard CODEm modelling approach was applied to estimate deaths due to epilepsy. Separate models 

were used for estimating deaths for male and female, and the age range for both models was 28 days to 95+ 

years. Unadjusted death estimates were adjusted using CoDCorrect to produce final estimates of YLLs.  

 

Table: Covariates used in modelling deaths from epilepsy 

 
Level Covariate Direction 

1 

Pig meat consumption (kcal per capita)       + 

Pigs (per capita)       + 

SEV scalar: epilepsy       + 
Mean systolic blood pressure (mmhg)       + 

2 
Healthcare access and quality index        - 

Mean body-mass index       + 

Mean serum total cholesterol (mmol/L)       + 

3 

Cumulative cigarettes (10 years)       + 

Cumulative cigarettes (5 years)       + 

education (years per capita)       - 

log LDI (per capita)       - 

Socio-demographic Index       - 
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E3. Alzheimer’s disease and other dementias  

 

The approach for estimating deaths from Alzheimer’s disease & other dementias are shown in the following 

flowchart: 
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Data 

 

For estimating deaths due to Alzheimer’s disease & other dementias, death data from vital registration systems 

and prevalence data from population-based studies were used. Studies that reported prevalence, incidence, 

remission rate, excess mortality rate, relative risk of mortality, standardised mortality ratio, or with condition 

mortality rate were included. Studies with non-representative samples or no clearly defined sample were 

excluded from the analysis.   

 

Modelling Strategy 

 

Relative risk data 

 

First, using relative risk data extracted from studies identified by systematic review, the attributable risk was 

calculated and the GBD estimate of all-cause mortality rate for a given study location and time, using the 

following formula: 

 

𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑎𝑏𝑙𝑒 𝑅𝑖𝑠𝑘 = (𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑅𝑖𝑠𝑘 − 1) ∗ 𝐴𝑙𝑙-𝐶𝑎𝑢𝑠𝑒 𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 

 

Meta-analysis was conducted on the attributable risk data, using covariates for age, sex, exposure category (all 

dementia, Alzheimer’s disease, cognitive impairment), whether the study was conducted in a clinical sample, 

and categories indicating different types of variables that were controlled for in the component studies 

(educational attainment, cardiovascular disease comorbidities, smoking and alcohol consumption, and daily 

activities or residence in a nursing home). Relative risks were estimated using a second Bayesian bias-reduction 

meta-regression model and the same studies identified through systematic review.  

 

Meta-regression results were used to calculate the total number of excess deaths due to dementia as the product of 

prevalence estimates (post-adjustment for dementia caused by other GBD diseases) and estimates of attributable 

risk. 

 

Linked data  

 

The excess deaths calculated through the multiplication of attributable risk and prevalence represent the total 

number of excess deaths due to having dementia, which likely includes deaths due to other conditions, such as 

cardiovascular diseases, that are more common in those with dementia as compared to the general population due 

to common underlying risk factors such as blood pressure, smoking, and lower educational attainment. In order to 

subset this total number of excess dementia deaths to calculate the number of deaths that were caused by dementia, 

GBD completed an analysis of linked clinical and mortality data. Death records linked to inpatient records were 

used, covering all deaths from 2003 to 2017 in the Emilia-Romagna region of Italy. Using these data, GBD looked 

for markers of severe, end-stage disease in the clinical records up to one year before death. 
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To select these markers, for each ICD code that appeared in the data, GBD calculated the difference in the 

proportion of individuals who died with dementia and had a record of each code in the year before death and the 

proportion of individuals who died without dementia and had a record of the same code in the year before death. 

GBD reviewed the 150 codes with the highest difference and selected codes that indicated end-stage disease, 

excluding codes for conditions such as cardiovascular disease. Codes for decubitus ulcer, malnutrition, sepsis, 

pneumonia, urinary tract infections, falling from bed, senility, dehydration, sodium imbalance, muscular wasting, 

bronchitis, dysphagia, hip fracture, and bedridden status were used as indicators of severe disease.   

 

In order to determine the proportion of excess deaths that were caused by dementia, GBD calculated the proportion 

of dementia deaths that had clinical markers of end-stage disease in the year before death, above and beyond the 

occurrence of end-stage disease markers in those who died without dementia. The subtraction of the proportions 

with end-stage disease markers in those without dementia from the proportions in those with dementia represents 

the proportion of individuals who are assumed to have died with severe, end-stage dementia out of total deaths in 

those with dementia. 

 

Calculation of deaths due to dementia 

 

In order to apply these estimates to the total excess deaths these proportions were adjusted to calculate the 

proportion of individuals who died with severe, end-stage dementia out of excess dementia deaths using the 

formula:  

 
𝐷𝑖𝑒𝑑 𝑤𝑖𝑡ℎ 𝑆𝑒𝑣𝑒𝑟𝑒 𝐷𝑖𝑠𝑒𝑎𝑠𝑒

𝐸𝑥𝑐𝑒𝑠𝑠 𝐷𝑒𝑚𝑒𝑛𝑡𝑖𝑎 𝐷𝑒𝑎𝑡ℎ𝑠
=  

𝐷𝑖𝑒𝑑 𝑤𝑖𝑡ℎ 𝑆𝑒𝑣𝑒𝑟𝑒 𝐷𝑖𝑠𝑒𝑎𝑠𝑒

𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑚𝑒𝑛𝑡𝑖𝑎 𝐷𝑒𝑎𝑡ℎ𝑠
∗  

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑅𝑖𝑠𝑘

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑅𝑖𝑠𝑘 − 1
 

 

The number of deaths due to dementia were calculated as the product of total excess dementia deaths and the 

proportion of those who died with severe disease out of excess dementia deaths. These final estimates of deaths 

due to dementia were then used to adjust data on causes of death from all other causes in vital registration systems.   

 

Interpolation for all years 

 

Finally, log-linear interpolation was used to interpolate these results (limited to 1990, 1995, 2000, 2005, 2010, 

2015, 2017, 2019) to create estimates for the entire time series from 1980 to 2019. Socio-demographic Index was 

used as a covariate to extrapolate back to the year 1980.   
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E4. Brain and nervous system cancer 

 

The approach for estimating deaths from brain and nervous system cancer are shown in the following flowchart: 
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Data 

 

The cause of death (COD) database contains multiple sources of cancer mortality data. These sources include 

vital registration, verbal autopsy, and cancer registry data. The cancer registry mortality estimates uploaded 

into the COD database stem from cancer registry incidence data that have been transformed to mortality 

estimates through the use of mortality-to-incidence ratios (MIR). 

 

Only population-based cancer registries were included, and only those that included all cancers (no specialty 

registries), data for all age groups (except for paediatric cancer registries), and data for both sexes. Pathology-

based cancer registries were included if they had a defined population. Hospital-based cancer registries were 

excluded.  

 

Cancer registry data were excluded from either the final incidence data input or the MI model input if a more 

detailed source (eg, providing more detailed age or diagnostic groups) was available for the same population. 

Preference was given to registries with national coverage over those with only local coverage, except those 

from countries where the GBD study provides subnational estimates. Data were excluded if the coverage 

population was unknown.  

 

Bias of categories of input data 

 

Cancer registry data can be biased in multiple ways. A high proportion of ill-defined cancer cases in the registry 

data requires redistribution of these cases to other cancers, which introduces a potential for bias. Changes 

between coding systems can lead to artificial differences in disease estimates; however, this bias was adjusted 

by mapping the different coding systems to the GBD causes. Underreporting of cancers that require advanced 

diagnostic techniques can be an issue in cancer registries from low-income countries. On the other hand, 

misclassification of metastatic sites as primary cancer can lead to overestimation of cancer sites that are 

common sites for metastases, like the brain. Since many cancer registries are located in urban areas, the 
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representativeness of the registry for the general population can also be problematic. The accuracy of mortality 

data reported in cancer registries usually depends on the quality of the vital registration system. If the vital 

registration system is incomplete or of poor quality, the mortality-to-incidence ratio can be biased to lower 

ratios. 

 

Modelling strategy 

 

Cancer registry data went through multiple processing steps before integration with the COD database. First, the 

original data were transformed into standardised files, which included standardisation of format, categorisation, 

and registry names (#1 in flowchart).  

 

Second, some cancer registries report individual codes as well as aggregated totals (eg, C18, C19, and C20 are 

reported individually, but the aggregated group of C18-C20 [colorectal cancer] is also reported in the registry 

data). The data-processing step “subtotal recalculation” verifies these totals and subtracts the values of any 

individual codes from the aggregates. 

 

In the third step of the flowchart, cancer registry incidence data and cancer registry mortality data were mapped 

to GBD causes. A different map was used for incidence data and for mortality data because of the assumption 

that there are no deaths for certain cancers. One of the example is benign or in situ neoplasms. Benign or in situ 

neoplasms found in the cancer registry incidence dataset were simply dropped from that dataset. The same 

neoplasms reported in a cancer registry mortality dataset were mapped to the respective invasive cancer. 

 

In the fourth data-processing step of the flowchart, cancer registry data were standardised to the GBD age 

groups. Age-specific incidence rates were generated using all datasets that include microdata, and datasets that 

report age groups up to 95+ years of age, while age-specific death rates were generated from the CoD data. 

Age-specific proportions were then generated by applying the age-specific rates to a given registry population 

that required age-splitting to produce the expected number of cases/deaths for that registry by age. The expected 

number of cases/deaths for each sex, age, and cancer were then normalised to 1, creating final, age-specific 

proportions. These proportions were then applied to the total number of cases/deaths by sex and cancer to get 

the age-specific number of cases/deaths.  

 

In the rare case when the cancer registry only contained data for both sexes combined, the now-age-specific 

cases/deaths were split and reassigned to separate sexes using the same weights that are used for the age-

splitting process. Starting from the expected number of deaths, proportions were generated by sex for each age 

(eg, if for ages 15 to 19 years old there are six expected deaths for males and four expected deaths for females, 

then 60% of the combined-sex deaths for ages 15-19 years would be assigned to males and the remaining 40% 

would be assigned to females).  

 

In the fifth step of flowchart, data for cause entries that are aggregates of GBD causes were redistributed.  

 

In the sixth step of the flowchart, unspecified codes (“garbage codes”) were redistributed. Redistribution of 

cancer registry incidence and mortality data mirrored the process of the redistribution used in the cause of death 

database. 

 

In the seventh step of the flowchart, duplicate or redundant sources were removed from the processed cancer 

registry dataset.    

 

In the eighth step of the flowchart, the processed incidence and mortality data from cancer registries were 

matched by cancer, age, sex, year, and location to generate MI ratios. These MI ratios were used as input for a 

three-step modelling approach using ST-GPR, with Healthcare Access and Quality (HAQ) Index as a covariate 

in the linear step mixed effects model using a logit link function. Predictions were made without the random 

effects. The ST-GPR model has three main hyper-parameters that control for smoothing across time, age, and 

geography, which were adjusted for GBD 2019. The time adjustment parameter lambda (𝜆) aims to borrow 

strength from neighbouring time points (ie, the exposure in this year is highly correlated with exposure in the 

previous year but less so further back in time). Lambda was lowered from 2 to 0.05, reducing the weight of 

more distant years. The age adjustment parameter omega (ω) borrows strength from data in neighbouring age 

groups and was set to 0.5 (unchanged). The space adjustment parameter zeta (𝜉) aims to borrow strength across 

the hierarchy of geographical locations. Zeta was lowered from 0.95 to 0.01, reducing the weight of more 

distant geographical data. For the remaining parameters in the Gaussian process regression, GBD lowered the 

amplitude from 2 to 1 (reducing fluctuation from the mean function) and reduced the scale value from 15 to 10 

(reducing the time distance over which points are correlated).  
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For each cancer, MI ratios from locations in HAQ quintiles 1-4 were dropped if they were below the median of 

MI ratios from locations in HAQ quintile 5. GBD also dropped MI ratios from locations in HAQ quintiles 1-4 if 

the MI ratios were above the third quartile + 1.5 * IQR (inter-quartile range). GBD dropped all MIR that were 

based on less than 15 (this was 25 in 2017) cases to avoid noise due to small numbers. GBD also aggregated 

incidence and mortality to the youngest five-year age bin where SEER reported at least 50 cases from 1990 to 

2015, to avoid unstable MIR predictions in young age groups on too few data points. The MIR in the minimum 

age-bin was used to backfill the MIR down to the lowest age group estimated for that cancer. 

 

Since MI ratios can be above 1, especially in older age groups and cancers with low cure rates, GBD used the 

95th percentile (by age group) of the cleaned dataset (detailed above) to cap the MIR input data. This “upper 

cap” was used to allow MIR over 1 but to constrain the MIR to a maximum level. To run the logit model, the 

input data were divided by the upper caps to get data from 0 to 1. Model predictions from ST-GPR were then 

rescaled back by multiplying them by the upper caps. 

 

To constrain the MIRs at the lower end, GBD used the fifth percentile of the cancer and age-specific cleaned 

MIR input data to replace all model predictions with this lower cap. 

 

Final MI ratios were matched with the cancer registry incidence dataset in the ninth step (#9 in the flowchart) to 

generate mortality estimates (Incidence * Mortality/Incidence = Mortality) (#10 in the flowchart). These 

mortality estimates are then smoothed by a Bayesian noise-reduction algorithm and uploaded into the COD 

database (#11 in the flowchart). Cancer-specific mortality modelling then followed the general CODEm 

process. 

 

Covariates used in modelling deaths from brain and nervous system cancer  

 
Level Covariate Direction 

1 Litres of alcohol consumed per capita + 

Log-transformed SEV scalar: Thyroid Cancer + 

2 Age- and sex-specific SEV for low vegetables + 

Age- and sex-specific SEV for high red meat + 

Tobacco (cigarettes per capita) + 

Mean BMI + 

Healthcare Access and Quality Index  − 

3 
  

Education (years per capita) − 

Sanitation (proportion with access) − 

Improved water source (proportion with access) − 

Age- and sex-specific SEV for low fruits + 

LDI (I$ per capita) + 

Socio-demographic Index + 

 

  



51 

 

E5. Parkinson’s disease 

 

The approach for estimating deaths from Parkinson’s disease is shown in the following flowchart: 
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Data 

 

Data used to estimate deaths due to Parkinson’s disease included death data from vital registration systems and 

prevalence data from surveys and claims sources. A systematic review was conducted and studies that reported 

prevalence, incidence, remission rate, excess mortality rate, relative risk of mortality, standardized mortality 

ratio, or with-condition mortality rate were included. Studies with no clearly defined sample or that drew from 

specific clinic/patient organizations were excluded.  

 

Modelling strategy 

 

First, GBD ran a CODEm model for Parkinson’s disease and extracted the death rates by age, sex, and 

geography. The covariates used in this intermediary model are displayed below; some have a direction of 0 

because this model was run early in the GBD 2019 cycle. The final Parkinson’s model has a negative or positive 

direction specified for all covariates. 

 
Level Covariate Direction 

1 Cumulative cigarette consumption (10 years) - 

2 Absolute latitude  + 

Cholesterol (total, mean per capita) + 

Sanitation (proportion with access) 0 

Improved water source (proportion with access) 0 

Fruit consumption adjusted (g) - 

Healthcare access and quality index - 

3 Education (years per capita) - 

Socio-demographic index + 

Lag distributed income 0 

 

Second, GBD ran a DisMod-MR 2.1 model with all data on incidence, prevalence, and mortality risk (RR, 

SMR, or with-condition mortality rates) and a setting of zero remission and extracted prevalence by age, sex, 

and geography. Studies where the case definition of two of the four cardinal symptoms of Parkinson’s disease 

was not filled were crosswalked to studies using the reference case definition. No random effects were used in 

the model in order to prevent spurious inflation of regional differences due to differences in measurement and 

measurement error.  
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Third, the seven countries (France, England, the United States, the Netherlands, Finland, Scotland, and Wales) 

with the highest cause-specific mortality rate to prevalence ratio in 2019 were selected. These countries also had 

an age-standardised prevalence rate greater than 0.0005, and a population greater than 1 million.  

 

Fourth, GBD used a linear effects regression with dummies on age group and sex to predict excess mortality 

(i.e., the ratio of cause-specific mortality rate and prevalence) by age and sex. 

 

Fifth, these estimates were added to a second DisMod-MR 2.1 model as pertaining to the full 1990–2019 

estimation period. For the countries included in the regression, GBD allowed them to retain their original excess 

mortality rates (EMR) when the age-standardized EMR for a country was higher than the age-standardized 

EMR prediction generated from the regression. These countries retained their age- and sex-specific ratios and 

entered those also as pertaining to the full 1990–2019 estimation period. Smoking prevalence was used as a 

country-level covariate. Data for standardized mortality ratio, with-condition mortality rate, and relative risk 

were excluded as GBD wanted to estimate cause-specific mortality rates that were consistent with the level of 

excess mortality from the seven chosen countries in 2019. 

 

Sixth, GBD took the predictions of cause-specific mortality by age, sex, geography, and year that DisMod-MR 

2.1 calculated as being consistent with the data on incidence, prevalence, and the priors on excess mortality 

from step five. Because DisMod-MR 2.1 produces estimates in five-year intervals only, GBD expanded the time 

series by log-linear interpolation; values for 1980-1990 were generated using a regression on the entire time 

series with Socio-demographic index included as a predictor. GBD divided this cause-specific mortality by the 

all-cause mortality used in DisMod to calculate the Parkinson’s disease cause-fraction based on prevalence data 

and the excess mortality derived from countries most likely to code to Parkinson’s disease as a cause of death.  

  

Seventh, GBD calculated the difference between this cause-fraction derived from DisMod and the cause-

fraction derived from the cause of death data prep process before redistribution in order to get the amount of 

cause fraction that needed to be retrieved from other causes through the Parkinson’s disease redistribution 

process.  

  

Eighth, in order to calculate where these Parkinson’s disease deaths should be retrieved from, multiple cause of 

death (MCOD) data was analysed. GBD only used data from the US, and asserted that the data from 2010-2015, 

during which the increases in coding to Parkinson’s disease as a cause of death levelled off, is the reference 

data.  

  

Ninth, for deaths where Parkinson’s disease is the underlying cause of death in the years 2010-2015, GBD 

calculated what the underlying cause of death would have been in the counterfactual scenario in which 

Parkinson’s disease had not been recognized. In order to calculate this counterfactual, GBD examined the 

causes listed in part one of the chain of the death certificate. For each death certificate chain GBD looked across 

the entire dataset from 1980-2015 and determine what the distribution of underlying causes of death was in 

individuals with that particular death certificate chain. Then, the counterfactual deaths were assigned 

proportionally to the causes that are listed as underlying in these death certificates. If, over the time period, 

there were less than 1,000 death certificates that had exactly the same death certificate chain, then GBD 

included all death certificate chains that had those same causes, but which could additionally include other 

causes in the chain as well. To assign counterfactual deaths for these chains, GBD further subsetted the data to 

death certificate chains where any of the causes in the original death certificate chain were listed as underlying, 

determined the distribution of underlying causes of death among just this subset, and then assigned 

counterfactual deaths proportionally in the same manner. 

   

Tenth, once GBD determined the counterfactual causes of death stemming from all Parkinson’s disease deaths 

from 2010-2015, the proportion of deaths were calculated by the cause that should be Parkinson’s disease 

deaths according to the reference data by taking the counterfactual deaths for each cause and dividing by the 

sum of the counterfactual deaths for that cause plus the directly coded deaths for that cause.   

 

Eleventh, GBD applied the proportions to cause of death data in cause fraction space and scaled the cause 

fractions to the total mortality cause fraction to be retrieved based on the DisMod model. GBD set caps on the 

percent of deaths that were moved by age, sex and cause. The caps were determined by finding the 95th 

percentile of the percentages of deaths moved in each age-sex-cause category across all 5-star vital registration 

locations. The COD data is then processed using general redistribution strategies and noise reduction.  

  

Finally, the data derived from this process was used in a final CODEm model, using the covariates as the 

original CODEm model. These covariates were adjusted for this model in GBD 2019 so that every covariate 
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had a specified directionality (see table below), and with some adjustments for level. These results were then 

adjusted through CodCorrect and become the final cause of death estimates for Parkinson’s disease. 

  
Level Covariate Direction 

1 Cumulative cigarette consumption (10 years) - 

Fruit consumption adjusted (g) - 

2 Absolute latitude  + 

Cholesterol (total, mean per capita) + 

Sanitation (proportion with access) + 

Improved water source (proportion with access) + 

Healthcare access and quality index - 

3 Education (years per capita) - 

Socio-demographic index + 

Lag distributed income + 

 

E6. Multiple sclerosis 

 

The approach for estimating deaths from multiple sclerosis is shown in the following flowchart: 
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Data 

 

Data used to estimate multiple sclerosis included vital registration and surveillance data from the cause of death 

database. GBD excluded data if they (1) were implausibly high or low, (2) substantially conflicted with 

established age or temporal patterns, or (3) substantially conflicted with other data sources conducted from the 

same locations or locations with similar characteristics (i.e., Socio-demographic Index). In particular, where 

data-processing could not resolve discrepancies between different coding systems for the same location over 

time, one system was selected as more reliable and the other was excluded.   

 

Modelling strategy  

 

The standard CODEm modelling approach was used to estimate deaths due to multiple sclerosis. Separate 

models were used for estimating deaths for male and female, and the age range for both models was 5-95+ years 

(differing from previous years where the age range was 20-95+ years). The linear floor was set to 0.0001. The 

full list of covariates used in GBD 2019 are displayed below. Unadjusted death estimates were adjusted using 

CoDCorrect to produce final estimates of YLLs. 

  

Covariates used in modelling deaths from multiple sclerosis  

 
Level Covariate Direction 

1 Absolute value of average latitude    + 

2 
Mean serum total cholesterol (mmol/L)    + 

Health care access and quality index    - 

3 

Cumulative cigarettes (10 years)    + 

Cumulative cigarettes (5 years)    + 

Education (years per capita)    - 

Log-transformed LDI (per capita)    - 

Smoking prevalence           + 

Socio-demographic Index    + 
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E7. Motor neuron diseases 

 

The approach for estimating deaths from motor neuron diseases are shown in the following flowchart: 
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Data 

 

Data used to estimate motor neuron diseases included vital registration and surveillance data from the cause of 

death database. GBD excluded data points that (1) were implausibly high or low, (2) substantially conflicted 

with established age or temporal patterns, or (3) substantially conflicted with other data sources from the same 

locations or locations with similar characteristics (i.e., Socio-demographic Index).   

 

Modelling strategy  
 

The standard CODEm modelling approach was used to estimate deaths due to multiple sclerosis. Separate 

models were used for estimating deaths for male and female, and the age range for both models was 0-days to 

95+ years. Unadjusted death estimates were adjusted using CoDCorrect to produce final estimates of YLLs.   

 

Covariates used in modelling deaths from motor neuron diseases  

 

 

 

 

 

 

 

 

 

 

  

Level Covariate Direction 

1 

Mean total body mass index (kg/m2)           - 

Mean serum total cholesterol (mmol/L)    - 

Absolute value of average latitude   + 

Mean diabetes fasting plasma glucose (mmol/L)   + 

Fruit consumption (grams per day adjusted)    - 

Socio-demographic Index           + 

Health care access and quality index    - 

2 

Population-weighted mean temperature    - 

Sanitation (proportion with access)    + 

Improved water source (proportion with access)    - 

3 
Education (years per capita)    + 

Log-transformed LDI (per capita)    + 
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E8. Encephalitis 

 

The approach for estimating deaths from encephalitis is shown in the following flowchart: 
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Data 

 

Vital registration and verbal autopsy data were used to model the cause of death estimation of encephalitis. The 

data was outliered in instances where garbage code redistribution and noise reduction, in combination with 

small sample sizes, resulted in unreasonable cause fractions when compared to regional, super-regional, and 

global rates, and data that violated well-established time or age trends. Outliering methods were consistent 

across both vital registration and verbal autopsy data. 

 

Modelling strategy 

 

Deaths due to encephalitis were modelled with a standard CODEm model using the cause of death database and 

location-level covariates as inputs. Separate global and data-rich models were hybridised to acquire unadjusted 

results, which were adjusted using CodCorrect to reach final years of life lost due to encephalitis.  

 

Covariates used in modelling deaths from encephalitis  

 
Level Covariate Direction 

1 Japanese encephalitis binary + 

Age- and sex-specific summary exposure value for child underweight + 

2 Log-transformed lag distributed income - 

Healthcare Access and Quality Index - 

Maternal care and immunization - 

3 Squared proportion of in-facility deliveries - 

Socio-demographic Index - 

Logit-transformed sanitation (proportion with access) - 

Logit-transformed water (proportion with access) - 

Diphtheria-tetanus-pertussis third-dose vaccination coverage - 

Maternal education (years per capita) - 
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E9. Meningitis 

 

The approach for estimating deaths from meningitis is shown in the following flowchart: 
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Data 

 

Input data for the overall meningitis model came from the cause of death database, which includes vital 

registration and verbal autopsy data. The data was outliered in instances where garbage code redistribution and 

noise reduction, in combination with small sample sizes, resulted in unreasonable cause fractions when 

compared to regional, super-regional, and global rates, and data that violated well-established time or age 

trends. Outliering methods were consistent across both vital registration and verbal autopsy data. 

 

Modelling strategy 

 

Deaths due to meningitis were modelled with two CODEm models, separately for each sex and two age 

categories – under 5 and 5 years and above. The mortality trends differ substantially between children and 

adults, and there are a significant number of data sources that only have data for children under 5. The two 

models used the same covariates (with the exception of the covariate for underweight, which is age-specific) 

and otherwise standard CODEm parameters. The final sex-specific models for deaths due to all meningitis were 

a hybridised model of separate global and data-rich models for males and females. 

 

Death estimates for each of the three aetiologies of bacterial meningitis – meningococcal, pneumococcal, H. 

influenzae type B – were derived from aetiology-specific incidence and case fatality rate estimates.  
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The aetiology-specific deaths were then squeezed to the total number meningitis deaths after CoDCorrect and 

meningococcal shocks deaths were included at the draw level. 

 

Covariates used in modelling deaths from meningitis (0–4 years, 5–95+ years) 

 
Level Covariate Name    Direction 

1 Meningitis belt (proportion of population in belt)   + 

1 MenAfriVac coverage   - 

1 H. influenzae type B proportion covered   - 

1 PCV3 coverage proportion   - 

2 Age- and sex-specific summary exposure value for child underweight   + 

2 Logit-transformed water (proportion with access)          - 

2 Maternal care and immunization   - 

2 Healthcare Access and Quality Index   - 

3 Log-transformed lag distributed income   - 

3 Sanitation (proportion with access)   - 

3 Maternal education (years per capita)   - 

3 Socio-demographic Index   - 

 

E10. Tetanus 

 

The approach for estimating deaths from tetanus is shown in the following flowchart: 
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Data 

 

Tetanus cause of death data included vital registration, verbal autopsy, and surveillance sources from all 

locations as available. Data was excluded if it was highly incongruent with other available data from the same 

location or locations of similar sociodemographic characteristics (i.e., Socio-demographic Index).  

 

Modelling strategy 

 

Cause of Death Ensemble modelling approach (CODEm) was used to compute age-, sex-, location-, and year‐

specific estimates. Given the relative rarity of tetanus mortality, it was modelled directly in count space. These 

models in count space had lower out-of-sample root mean squared error (RMSE) than rate-space models, and 

thus were frequently the top models selected in the ensemble. 

 

Separate, sex-specific models were run for neonatal tetanus (under 1-year age groups) and all other tetanus (1 

year to 95+ age groups). Models were also stratified by vital registration data quality, running both “data‐rich” 

and global models for each age- and sex-specific group. Following model completion, the data-rich and global 

model outputs were combined to produce a single set of estimates for all locations by sex and age (under 1 and 

over 1 age groups). Tables below lists the covariates used in the under-1 models and the over-1 model. 
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Summary of covariates used in the under-1 tetanus cause of death model  

 
Level Covariate Direction 

1 
Diphtheria-tetanus-pertussis third-dose vaccination coverage    - 

Tetanus toxoid coverage    - 

2 

In-facility deliveries (proportion)    - 

Skilled birth attendance (proportion)    - 

Healthcare Access and Quality Index    - 

3 

Lag-distributed income     - 

Socio-demographic Index    - 

Mean years of education per capita    - 

 

Summary of covariates used in the over-1 tetanus cause of death model  

 

Level Covariate Direction 

1 Diphtheria-tetanus-pertussis third-dose vaccination coverage    - 

2 Healthcare Access and Quality Index    - 

3 Sanitation access (proportion)    - 

Lag-distributed income    - 

Socio-demographic Index    - 

Mean years of education per capita    - 
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F. Estimation of risk factors for neurological disorders 

 

The analytical approach used in GBD 2019 for comparative risk assessment to estimate population attributable 

fractions for risk factors are shown in the following flowchart: 

 

 
 

GBD is Global Burden of Disease. SEV is summary exposure value. TMREL is theoretical minimum‐risk exposure level. PAF is 
population attributable fraction. YLL is years of life lost. YLD is years lived with disability. DALY is disability adjusted life-years. Ovals 

represent data inputs, rectangular boxes represent analytical steps, cylinders represent databases, and parallelograms represent intermediate 

and final results.  
   
We describe details of the major risk factors related to neurological disorders, i.e. high systolic blood pressure, 

air pollution, dietary risks, high fasting plasma glucose, smoking, secondhand smoke, high body-mass index, 

impaired kidney function, other environmental risks, high low-density lipoprotein cholesterol level, non-optimal 

temperature, alcohol use, low physical activity, low birthweight and short gestation. Description of other risk 

factors can be found in the GBD 2019 risk factor paper (Lancet 2020; 396: 1223–49). 
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F1. High systolic blood pressure 

 

In the GBD analysis, high systolic blood pressure (SBP) is associated with increased risk for stroke among 

the neurological disorders. For the purpose of attributing disease burden to high SBP, TMREL for SBP 

range from 110 to 115 mmHg based on pooled prospective cohort studies that showed risk of mortality 

increases for SBP above this level.1,2 To include the uncertainty in the TMREL, a random draw was taken 

from the uniform distribution of the interval between 110 mmHg and 115 mmHg each time the population 

attributable burden was calculated. 

 

The steps in the estimation of disease burden attributable to high systolic blood pressure are shown in the 

following flowchart: 

 

 

Data 

 

Data on mean systolic blood pressure were used from literature and from household survey microdata and 

reports. Studies were included if they were population-based and directly measured systolic blood pressure 

using a sphygmomanometer. The data were assumed to be representative if the geography or the population 

were not selected because it was related to hypertension or hypertensive outcomes. 

 

Data were utilised in the modelling process unless an assessment strongly suggested that the source was 

biased. A candidate source was excluded if the quality of study did not warrant a valid estimate because of 

selection (non- representative populations) or did not provide methodological details for evaluation. In a 

small number of cases, a data point was considered to be an outlier candidate if the level was widely 

inconsistent with data from other country. 

 

Individual-level data on blood pressure estimates extracted from survey microdata were collapsed across 

demographic groupings to produce mean estimates in the standard GBD five-year age-sex groups. If 

microdata were unavailable, information from survey reports or from literature were extracted along with 

any available measure of uncertainty including standard error, uncertainty interval, and sample size. 

Standard deviations were also extracted. Where mean SBP was reported split out by groups other than age, 

sex, location, and year (e.g. by hypertensive status), a weighted mean was calculated. 

 

Prior to modelling, data provided in age groups wider than the GBD 5-year age groups were processed using 

the approach outlined in Ng and colleagues.3 Briefly, age-sex patterns were identified using sources of data 

with multiple age-sex groups, and these patterns were applied to estimate age-sex-specific levels of mean 

systolic blood pressure from aggregated results reported in published literature or survey reports. In order to 

incorporate uncertainty into this process and borrow strength across age groups when constructing the age-
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sex pattern, a model with auto-regression on the change in mean SBP over age groups was used. Draws of 

the age-sex pattern were combined with draws of the input data needing to be split in order to calculate the 

new variance of age-sex split data points. 

 

Modelling strategy 

 

Exposure estimates were produced from 1980 to 2019 for each national and subnational location, sex, and 

for each five-year age group starting from 25+. A spatiotemporal Gaussian process regression (ST-GPR) 

framework was used to model the mean SBP at the location-, year-, age-, sex-level.  

 

The first step of the ST-GPR framework requires the creation of a linear model for predicting SBP at the 

location-, year-, age-, sex-level. Covariates for this model were selected in two stages. First a list of 

variables with an expected causal relationship with SBP was created based on significant association found 

within high quality prospective cohort studies reported in the published scientific literature. The second 

stage in covariate selection was to test the predictive validity of every possible combination of covariates in 

the linear model, given the covariates selected above. This was done separately for each sex. Predictive 

validity was measured with out of sample root‐mean‐squared error. Ensemble with the lowest root-mean-

squared error for each sex was then used in the ST-GPR model. The result of the ST-GPR model are 

estimates of the mean SBP for each age, sex, location, and year. 

 

The standard deviation of SBP within a population was estimated for each national and subnational location, 

sex, and five-year age group starting from age 25 using the standard deviation mainly from person-level and 

some tabulated data sources. Tabulated data were only used to model standard deviation if it was sex-

specific and five-year-age-group-specific and reported a population standard deviation of SBP. The SBP 

standard deviation function was estimated using a linear regression: 

log(SDl,a,t,s) =  β0 + β1log (mean_SBPl,a,t,s)+β4sex +  ∑ βkIA

16

k=2

 

 

Where mean_SBPl,a,t,s is the location, age, time, and sex specific mean SBP estimate from ST-GPR, and IA is 

a dummy variable for a fixed effect on a given 5-year age group. 

 

To account for in-person variation in SBP, a ‘usual blood pressure’ adjustment was done. Measurements of a 

risk factor taken at a single time point may not accurately capture an individual’s true long‐term exposure to 

that risk. Blood pressure readings are highly variable over time due to measurement error as well as diurnal, 

seasonal, or biological variation. These sources of variation result in an overestimation of the variation in 

cross‐sectional studies of the distribution of SBP. To adjust for this overestimation, a correction factor was 

applied to each location-, age-, time-, and sex-specific standard deviation. These correction factors were age-

specific and represented the proportion of the variation in blood pressure within a population that would be 

observed if there were no within person variation across time. Four longitudinal surveys were used to 

estimate these factors: the China Health and Retirement Longitudinal Survey, the Indonesia Family Life 

Survey, the National Health and Nutrition Examination Survey I Epidemiological Follow-up Study, and the 

South Africa National Income Dynamics Survey.  

 

 For each survey, the following regression was created for each age group: 

 

SBPi,a =  β0 + β1sex+β3age + +υi 

 

Where SBPi,a is the systolic blood pressure of an individual i at age a, sex is a dummy variable for the sex 

of an individual, age is a continuous variable for the age of an individual, and υi is a random intercept for 

each individual. Then, a blood pressure value SBP̂i,b was predicted for each individual i for his/her age at 

baseline b. The correction factor cf for each age group within each survey was calculated as variation in 

these predicted blood pressures was divided by the variation in the observed blood pressures at baseline, 

SBPi,b: 

 

cf = √
var(SBP̂ b)

var(SBP b)
 

 

The average of the correction factors was taken over the three surveys to get one set of age-specific 

correction factors, which were then multiplied by the square of the modelled standard deviations to estimate 
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standard deviation of the ‘usual blood pressure’ of each age, sex, location, and year. Because of low sample 

sizes, the correction factors for the 75-79 age group were used for all terminal age groups.  

The shape of the distribution of SBP was estimated using all available person-level microdata sources, 

which was a subset of the input data into the modelling process. Ensemble distribution was created from a 

weighted average of distribution families was fit for each individual microdata source, separately by sex. 

The weights for the distribution families for each individual source were then averaged and weighted to 

create a global ensemble distribution for each sex. 

 

The estimates of RR for stroke were taken from the CALIBER study4 and from two pooled epidemiological 

studies: the Asia Pacific Cohort Studies Collaboration2 and the Prospective Studies Collaboration.5 These 

epidemiological studies have shown that the RR for stroke associated with SBP declines with age, with the 

log (RR) having an approximately linear relationship with age and reaching a value of 1 between the ages of 

100 and 120. RRs were reported per 10 mmHg increase in SBP above the TMREL value (115 mmHg), 

calculated as in the equation below: 

𝑅𝑅(𝑥) = 𝑅𝑅0

(𝑥−𝑇𝑀𝑅𝐸𝐿)
10 𝑚𝑚𝐻𝑔  

 

Where 𝑅𝑅(𝑥) is the RR at exposure level 𝑥 and 𝑅𝑅0 is the increase in RR for each 10 mmHg above the 

TMREL. Dismod-MR 2.1 was used to pool effect sizes from included studies and generate dose response 

curve for the outcomes associated with high SBP. The tool enabled us to incorporate random effects across 

studies and include data with different age ranges. RRs were used universally for all countries and the meta-

regression only helped to pool the three major sources and produce RRs with uncertainty and covariance 

across ages taking into account the uncertainty of the data points. Estimates of exposure to high SBP and 

relative risks for stroke were then used to calculate the population attributable fractions for stroke 

attributable to high SBP.  
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F.2 Air pollution 

  

Air pollution in GBD consists mainly of ambient air pollution and household air pollution. The exposure to 

these and the disease burden caused by them are estimated separately in GBD. 

 

F2.1. Ambient particulate matter pollution 

 

Exposure to ambient particulate matter pollution is defined as the population‐weighted annual average mass 

concentration of particles with an aerodynamic diameter less than 2.5 micrometers (PM2.5) in a cubic meter 

of air at a spatial resolution of 0.1° x 0.1° over the globe, which is approximately 11 x 11 km at the equator. 

This measurement is reported in μg/m3. These estimates were based on multiple satellite-based aerosol 

optical depth data globally combined with a chemical transport model, and calibration of these with PM2.5 

data from the ground-level monitoring stations. 

 

In the GBD analysis, exposure to ambient particulate matter pollution is associated with increased risk for 

stroke and meningitis among the neurological disorders. For the purpose of attributing disease burden to 

ambient air pollution, the TMREL for ambient air pollution was defined as population-weighted mean 

between 2.4 and 5.9 μg/m3, bounded by the minimum and fifth percentiles of exposure distributions from 

outdoor air pollution cohort studies. The uniform distribution represents the uncertainty regarding adverse 

effects of low-level exposure. To include the uncertainty in the TMREL, GBD took a random draw from the 

uniform distribution of the interval between 2.4 and 5.9 μg/m3 each time the population attributable burden 

was calculated. TMREL was defined as a uniform distribution rather than a fixed value in order to represent 

the uncertainty regarding the level at which the scientific evidence was consistent with adverse effects of 

exposure. The specific OAP cohort studies selected for this averaging were based on the criteria that their 

fifth percentiles were less than that of the American Cancer Society Cancer Prevention II cohort’s fifth 

percentile of 8.2 based on Turner et al.1 

 

The steps in the estimation of disease burden attributable to ambient particulate matter pollution are shown 

in the following flowchart:  

 

Input data

Process

Results

Database

Risk Factors

Nonfatal

Burden estimation

Cause of death

Covariates

Input Data

GEOS-Chem chemical 
transport model

Global emission 
inventories

Assimilated meteorology

Based on the mean of the min and 5th 
percentile of several studies conducted in 

North America

Calculate 
location-

specific relative 
risks

Weight using gridded 
population to get location-

level exposure

Estimation of gridded 
surface PM2.5 

Satellite retrievals 2000-
2017

Ground monitor 
PM2.5 estimates

Bayesian 
hierarchical 

calibration model 

Government 
monitoring sites

WHO ambient air pollution 
in cities database

Gridded population 
estimates

Gridded 
exposure 

estimates of 
ground monitor 

PM2.5

MR-BRT Spline 
fitting

Risk Curves

Calculate TMREL as 
minimum-5th percentile:

2.4-5.9 ug/m3

Population 
attributable 

fractions by risk, 
cause, age, sex, 

and geography

Population 
attributable 

fractions by risk 
aggregate, cause, 

age, sex, and 
geography

Deaths, YLLs, YLDs, 
and DALYs 

attributable to each 
risk by age, sex, 
year, geography

Deaths, YLLs, YLDs, 
DALYs for each 

disease and injury 
by age, sex, year, 

geography

Exposure

Application of 
mediation factors 
where applicable

Relative risks

Joint  PM PAF 
calculation  

Convert exposure to 
PM2.5

Ambient air pollution

Household solid fuel use

Cohort studies

Case-control studies

Cohort studies

Case-control studies

Randomized-controlled trials

Birthweight and Gestational Age

Secondhand smoke

Cohort studies

Case-control studies

Ambient air pollution

Cohort studies

Case-control studies

Convert RR and 
OR to linear 

shift

MR-BRT Spline 
fitting

BW GA 
shift curves

Household solid fuel use

Cohort studies

Case-control studies

Randomized-controlled trials

Convert 
exposure to 

PM2.5

Shift BW-GA 
distributions based on 

ambient and 
household exposure

Generate BW-
GA PAFs based 
on PM-Deleted 
counterfactual

Proportional 
split

Household 
air-pollution 

exposure

 

Data 

 

The estimates of ambient PM2.5 exposures in India were based on multiple satellite-based aerosol optical 

depth data combined with a chemical transport model, and calibration of these with PM2.5 data from ground-

level monitoring stations. 

 

PM2.5 ground measurements: Monitor-specific measurements as reported in the WHO Global Ambient Air 

Quality Database were used, resulting in measurements of concentrations of PM10 and PM2.5 from over 

10,000 ground monitors from 116 countries. For locations measuring only PM10, PM2.5 measurements were 

estimated from PM10. This was performed using a locally derived conversion factor (PM2.5/PM10 ratio, for 

stations where measurements are available for the same year) that was estimated using population-weighted 

averages of location-specific conversion factors for the country or state. If country-level conversion factors 

were not available, the average of country-level conversion factors within a region were used. Additionally, 
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information related to the ground measurements was also included where available, including monitor geo‐
coordinates and monitor site type. 

 

Satellite-based estimates: These estimates were available at 0.1×0.1o resolution (~11 x 11 km resolution at 

the equator) and combine aerosol optical depth retrievals from multiple satellites with the updated GEOS 

Chem chemical transport model and land use information. Updates to the GEOS-Chem simulation includes 

improved representation of mineral dust and secondary organic aerosol, as well as updated emission 

inventories. The resultant geophysical PM2.5 estimates were highly consistent with ground monitors 

worldwide Additionally, data from MAIAC at 1 km resolution were also used to estimate PM2.5 at the global 

scale.  

 

Population data: A comprehensive set of population data on a high‐resolution grid was obtained from the 

Gridded Population of the World (GPW) database. These data are provided on a 0.0083o× 0.0083o 

resolution. Aggregation to each 0.1o×0.1o grid cell was accomplished by summing the central 12 × 12 

population cells.  

 

Chemical transport model simulations: Estimates of the sum of particulate sulfate, nitrate, ammonium, and 

organic carbon and the compositional concentrations of mineral dust simulated using the GEOS Chem 

chemical transport model, and a measure combining elevation and the distance to the nearest urban land 

surface were available for 2000–2017 for each 0.1o×0.1o grid cell.2,3 

 

Modelling strategy 

 

An updated Data Integration Model for Air Quality (DIMAQ-2) was used for ambient air pollution 

modelling.3,4 The coefficients in the calibration model were estimated for each country. Where data were 

insufficient within a country, information can be ‘borrowed’ from a higher aggregation (region) and, if 

enough information is still not available, from an even higher level (super‐region). Individual country‐level 

estimates were therefore based on a combination of information from the country, its region, and its super‐
region. This was implemented within a Bayesian hierarchical modelling (BHM) framework. BHMs provide 

an extremely useful and flexible framework in which to model complex relationships and dependencies in 

data. Uncertainty can also be propagated through the model, allowing uncertainty arising from different 

components, both data sources and models, to be incorporated within estimates of uncertainty associated 

with the final estimates. The results of the modelling comprise a posterior distribution for each grid cell, 

rather than just a single point estimate, allowing a variety of summaries to be calculated. The primary 

outputs here are the median and 95% credible intervals for each grid cell.  

 

In DIMAQ-2 model within‐country variation in calibration was included. The ground measurements were 

matched with other inputs (over time), and the (global‐level) coefficients were allowed to vary over time, 

subject to smoothing that is induced by a first‐order random walk process. In addition, the manner in which 

spatial variation can be incorporated within the model was developed: where there are sufficient data, the 

calibration equations can now vary (smoothly) both within and between countries, achieved by allowing the 

coefficients to follow (smooth) Gaussian processes. Where there are insufficient data within a country, 

information was borrowed from lower down the hierarchy and it was supplemented with information from 

the wider region to produce accurate equations. 

 

Due to both the complexity of the models and the size of the data, notably the number of spatial predictions 

that were required, recently developed techniques that perform ‘approximate’ Bayesian inference based on 

Integrated Nested Laplace Approximations (INLA) were used.4 Computation was performed using the R 

interface to the INLA computational engine. Also, samples from the Bayesian model were used to represent 

distributions of estimated concentrations in each grid-cell. Estimates and distributions representing 

uncertainty of concentrations for each grid was obtained by taking repeated (joint) samples from the 

posterior distributions of the parameters and calculating estimates based on a linear combination of those 

samples and the input variables.5 

 

DIMAQ-2 was used to produce estimates of ambient PM2.5 for 1990, 1995, and 2010–2019 by matching the 

gridded estimates with the corresponding coefficients from the calibration. As there is a lag in reporting 

ambient air pollution based quantities, the input variables were extrapolated, allowing estimates for 2018 

and 2019 to be produced in the same way as other years and, crucially, allowing measures of uncertainty to 

be produced within the BHM framework rather than by using post-hoc approximations.  
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Estimates from the satellites and the GEOS-Chem chemical transport model in 2018 and 2019 were 

produced by extrapolating estimates from 2000–2017 using generalised additive models,6 on a cell-by-cell 

basis, except in those grid cells that saw a >100% increase between 2016 and 2017, in which case only the 

2000–2016 estimates were used for extrapolating, in order to avoid unrealistic and/or unjustified 

extrapolation of trends. Population estimates for 2018 and 2019 were obtained by interpolation.   

 

Model development and comparison was performed using within- and out-of-sample assessment. In the 

evaluation, cross validation was performed using 25 combinations of training (80%) and validation (20%) 

datasets. Validation sets were obtained by taking a stratified random sample, using sampling probabilities 

based on the cross-tabulation of PM2.5 categories (0-24.9, 25-49.9, 50 74.9, 75-99.9, 100+ μg/m3) and super-

regions, resulting in them having the same distribution of PM2.5 concentrations and super-regions as the 

overall set of sites. The following metrics were calculated for each training/evaluation set combination: for 

model fit - R2 and deviance information criteria (DIC, a measure of model fit for Bayesian models); for 

predictive accuracy-RMSE and population weighted root mean squared error. 

 

All modelling was performed on the log-scale. The choice of which variables were included in the model 

was made based on their contribution to model fit and predictive ability. The list of variables and model 

structures that were considered in developing the model are below. 

 
Variable Model structure 

Continuous 
explanatory 

variables 

(SAT) Estimate of PM2.5 (in μgm-3) from satellite remote sensing on the log 
scale. 

(POP) Estimate of population for the same year as SAT on the log-scale. 

(SNAOC) Estimate of the sum of sulphate, nitrate, ammonium and organic 

carbon simulated using the GEOS Chem chemical transport model. 

(DST) Estimate of compositional concentrations of mineral dust simulated using 
the GEOS Chem chemical transport model. 

(EDxDU) The log of the elevation difference between the elevation at the ground 
measurement location and the mean elevation within the GEOS Chem simulation 

grid cell multiplied by the inverse distance to the nearest urban land surface. 

Discrete explanatory 
variables 

 (LOC) Binary variable indicating whether exact location of ground 

measurement is known. 

(TYPE) Binary variable indicating whether exact type of ground monitor is 
known. 

(CONV) Binary variable indicating whether ground measurement is PM2.5 or 

converted from PM10. 

Random effects 

Regional temporal (random walk) hierarchical random-effects on the intercept   

Regional hierarchical random-effects for the coefficient associated with SAT 

Regional hierarchical random-effects for the coefficient associated with POP 

Smoothed, spatially varying random-effects for the intercept 

Smoothed, spatially varying random-effects for the coefficient associated with 

SAT 

Super-region random effects were assumed to be independent and identically 

distributed. 

Interactions Interactions between the binary variables and the effects of SAT. 

 

For stroke and meningitis, results were used from cohort and case-control studies of ambient PM2.5 

pollution, cohort studies, case-control studies, and randomised-controlled trials of household use of solid 

fuel for cooking, and cohort and case-control studies of secondhand smoke. Incidence and mortality due to 

stroke were extracted from all available studies and was included as a covariate in the model. There was no 

significant difference between estimates of incidence risk and mortality risk, so both types of risk estimates 

were included in the curve fitting and the same curve was used for both incidence and mortality. Active 

smoking data was not used in the risk curves because of the inclusion of more estimates at high PM2.5 levels 

in the model available from the recent publications and additional studies of HAP.  

 

For stroke, evidence suggests that the relative risk decreases with age.7 To account for this in the model, 

unique risk curves were generated for stroke for every five‐year age group from 25–29 years to 95 years and 

older. Because the risk data for every unique age group is not available, each study was adjusted based on 

the median age during follow‐up to generate a full adjusted dataset for every curve. The median age of 

follow‐up was calculated by taking the median (or mean) age at enrollment and adding one‐half of median 

or mean follow‐up time. If follow‐up time was not available, 70% of total study period was taken based on 

the observed ratio of follow‐up time to total study period for other studies. Using the median age during 

follow‐up, each study was extrapolated to the full set of ages where the estimated data point for age was 

calculated.  
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MR-BRT splines were used to fit the risk data with a more flexible shape. The curve was fit beginning at 

zero exposure and incorporate the TMREL into the relative risk calculation process. The published relative 

risk over a range of exposure data was considered for fitting the risk curves. For OAP studies, the relative 

risk informs the curve from the fifth to the 95th percentile of observed exposure. When this is not available 

in the published study, the distribution was estimated from the provided information (mean and standard 

deviation, mean and IQR, etc.). The RR were scaled to this range. 

 

For HAP studies, each study was allowed to inform the curve from the ExpOAP to ExpOAP+ExpHAP, 

where ExpOAP is the GBD 2017 estimate of the ambient exposure level in the study location and year, and 

ExpHAP is the GBD 2017 estimate of the excess exposure for those who use solid fuel for cooking in the 

study location and year. For SHS studies, an updated strategy of exposure estimation was used for 

accounting for outdoor exposure. Similar to the approach used for HAP, each study was allowed to inform 

the curve from the ExpOAP to ExpOAP+ExpSHS, where ExpOAP is the GBD 2017 estimate of the ambient 

exposure level in the study location and year, and ExpSHS is an estimate of the excess exposure for those 

who experience secondhand smoke. 

 

Splines on the datasets were fitted including studies of OAP, HAP, and SHS using the following functional 

form, where X and XCF represent the range of exposure characterised by the effect size: 

 

𝑀𝑅𝐵𝑅𝑇(𝑋) − 𝑀𝑅𝐵𝑅𝑇(𝑋𝐶𝐹)~𝑆ℎ𝑖𝑓𝑡 

 

For each of the risk-outcome pairs, various model settings and priors were tested in fitting the MR-BRT 

splines. The final models used third-order splines with two interior knots and a constraint on the right-most 

segment, forcing the fit to be linear rather than cubic. Ensemble approach was used to knot placement, 

wherein 100 different models were run with randomly placed knots and then combined by weighting based 

on a measure of fit that penalises excessive changes in the third derivative of the curve. Knots were free to 

be placed anywhere within the fifth and 95th percentile of the data, as long as a minimum width of 10% of 

that domain exists between them. Shape constraints were included so that the risk curves were concave 

down and monotonically increasing, the most biologically plausible shape for the PM2.5 risk curve. On the 

non-linear segments, a Gaussian prior on the third derivative of mean 0 and variance 0.01 was used to 

prevent over-fitting; on the linear segment, a stronger prior of mean 0 and variance 1e-6 was used to ensure 

that the risk curves do not continue to increase beyond the range of the data. 

 

For the proportion of the population not exposed to HAP the relative risk was: 

 
𝑅𝑅𝑂𝐴𝑃  =   𝑀𝑅𝐵𝑅𝑇(𝑧 =  𝐸𝑥𝑝𝑂𝐴𝑃)/𝑀𝑅𝐵𝑅𝑇(𝑧 =  𝑇𝑀𝑅𝐸𝐿) 

 

And for those exposed to HAP, the relative risk was 
 

𝑅𝑅𝐻𝐴𝑃  =   𝑀𝑅𝐵𝑅𝑇(𝑧 =  𝐸𝑥𝑝𝑂𝐴𝑃 + 𝐸𝑥𝑝𝐻𝐴𝑃)/𝑀𝑅𝐵𝑅𝑇(𝑧 =  𝑇𝑀𝑅𝐸𝐿) 

 

A population level RR and PAF for all particulate matter exposure were then calculated. 

 
𝑅𝑅𝑃𝑀 = 𝑅𝑅𝑂𝐴𝑃(1 − 𝑃𝐻𝐴𝑃) + 𝑅𝑅𝐻𝐴𝑃𝑃𝐻𝐴𝑃 

 

𝑃𝐴𝐹𝑃𝑀 =
𝑅𝑅𝑃𝑀 − 1

𝑅𝑅𝑃𝑀
 

 

The grid-cell level particulate matter PAFs were population weighted to get a country level PAF, and finally 

split this PAF based on the average exposure to each OAP and HAP.  

 

𝑃𝐴𝐹𝑂𝐴𝑃 =
𝐸𝑥𝑝𝑂𝐴𝑃

𝐸𝑥𝑝𝑂𝐴𝑃+𝑃𝐻𝐴𝑃∗𝐸𝑥𝑝𝐻𝐴𝑃
𝑃𝐴𝐹𝑃𝑀, and 𝑃𝐴𝐹𝐻𝐴𝑃 =

𝑃𝐻𝐴𝑃∗𝐸𝑥𝑝𝐻𝐴𝑃

𝐸𝑥𝑝𝑂𝐴𝑃+𝑃𝐻𝐴𝑃∗𝐸𝑥𝑝𝐻𝐴𝑃
𝑃𝐴𝐹𝑃𝑀. 

 

With this strategy, 𝑃𝐴𝐹𝑃𝑀 = 𝑃𝐴𝐹𝐻𝐴𝑃 + 𝑃𝐴𝐹𝑂𝐴𝑃, and no burden is counted twice. 
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F2.2 Household air pollution  

  

Exposure to HAP from solid fuels is defined as the proportion of households using solid cooking fuels. The 

definition of solid fuel in this analysis includes coal, wood, charcoal, dung, and agricultural residues.  

 

In the GBD analysis, exposure to household air pollution is associated with increased risk for stroke and 

meningitis among the neurological disorders. For the purpose of attributing disease burden to household air 

pollution, TMREL was defined as a uniform distribution between 2.4 and 5.9 ug/m3. To include the 

uncertainty in the TMREL, a random draw from the uniform distribution of the interval between 2.4 and 5.9 

μg/m3 each time the population attributable burden was calculated were taken. 

 

The steps in the estimation of disease burden attributable to household air pollution are shown in the 

following flowchart: 

Household surveys , eg. DHS, MICS, 
and LSMS 

Published literature and reports

WHO Global household air pollution 
database 

WHO Household Energy Database
Proportion of 

households using 
solid cooking fuels 

Proportion of 
households using solid 

fuel

Spatio-Temporal 
Gaussian Process 

Regression

Location-year covariates:
maternal education, 

urbanicity

Proportion of 
individuals using 
solid fuel by year 
and geography

Exposure: Proportion model

PM 2.5 mapping 
value dataset 

Mixed-effects regression to 
estimate country-, year- 

specific PM2.5 concentration 
for females and living areas

Scale female PM2.5 exposure for 
male and child exposures 

Literature review on PM 2.5 exposure 
on men, women and children

Calculation the ratio of 
personal exposure to female 
exposure for both men and 

children

Geography-, year- specific 
average personal exposure to 

PM2.5 (in excess above ambient 
level) in household using solid 

cooking fuel

TMREL for cataract:
no households use solid fuel as 

primary cooking fuel

Household Air Pollution from Solid Fuels

Proportion of individuals 
using solid fuel

MR BRT Crosswalk 
calculation

Crosswalk data for family 
size adjustment

Subtract off estimated 
Ambient PM2.5 

exposure by location 
year

Population 
attributable 

fractions by risk, 
cause, age, sex, 

and geography

Application of 
mediation factors 
where applicable

See Ambient Air 
Pollution Write-up for 

details

Input data

Process

Results

Database

Risk Factors

Nonfatal

Burden estimation

Cause of death

Covariates

Input Data

Population 
attributable 

fractions by risk 
aggregate, cause, 

age, sex, and 
geography

Deaths, YLLs, YLDs, 
and DALYs 

attributable to each 
risk by age, sex, 
year, geography

Deaths, YLLs, YLDs, 
DALYs for each 

disease and injury 
by age, sex, year, 

geography

Household Air Pollution 
Exposure

Exposure: PM2.5 Mapping Model

Cataracts

Cohort Studies 

Case-Control Studies

Randomized Controlled Trials

MR BRT Meta Regression 
for the effect of solid 
fuel use on Cataracts

Location-year 
covariates:

Socio-demographic 
Index

Population Censuses 
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Data 

 

There are many data sources on HAP from solid fuel use in India which include national health surveys such 

as the National Family Health Survey and the District Level Household Survey, nationwide surveys of the 

National Sample Survey Organisation, and the Census of India, as well as other published and unpublished 

epidemiological studies.  

 

Globally, data were extracted from the standard multi-country survey series such as Demographic and 

Health Surveys, Living Standards Measurement Surveys, Multiple Indicator Cluster Surveys, and World 

Health Surveys, as well as census country-specific survey series. To fill the gaps of data in surveys and 

censuses, GBD also downloaded and updated HAP estimates from WHO Energy Database and extracted 

from literature through systematic review. Each nationally or sub-nationally representative data point 

provided an estimate for the percentage of households using solid cooking fuels. To crosswalk these 

estimates, whenever we had the available information, we extracted fuel use at both the individual and 

household levels. Estimates for the usage of solid fuels for non-cooking purpose were excluded, i.e. heating 

and primary fuels for lighting.  

 

Modelling strategy  

 

HAP was modelled at individual level using a three-step modelling strategy that uses linear regression, 

spatiotemporal regression and Gaussian Process Regression. The first step was a mixed-effect linear 

regression of logit-transformed proportion of households using solid cooking fuels as shown below. The 

linear model contains maternal education, proportion of population living in urban areas as covariates and 

has nested random effect by GBD region, and GBD super region respectively.  

 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛)~𝑚𝑎𝑡𝑒𝑟𝑛𝑎𝑙 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 + 𝑢𝑟𝑏𝑎𝑛𝑖𝑐𝑖𝑡𝑦 + (1|𝑟𝑒𝑔𝑖𝑜𝑛) + (1|𝑠𝑢𝑝𝑒𝑟 − 𝑟𝑒𝑔𝑖𝑜𝑛) 

 

The RRs for stroke and meningitis were jointly calculated with ambient PM2.5 air pollution. In order to use 

the particulate matter risk curves curve, the exposure to particulate matter with diameter of less than 2.5 

micrometres (PM2.5) must be estimated. A mapping model relying on a database of 75 studies which 

measures PM2.5 exposure in households using solid cooking fuel was utilised. Using socio-demographic 

index and study-level factors as covariates, the exposure was predicted for all location-years. Joint-

estimation PAF approach are described above for ambient particulate matter was used to get a country level 

PAF and split this PAF based on the average exposure to each OAP and HAP.  
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F3. Dietary risks 

 

Dietary risks in GBD comprise of ten components that are protective which include fruits, nuts and seeds, 

seafood omega-3 fatty acids, vegetables, fibre, whole grains, legumes, polyunsaturated fatty acids, calcium, 

and milk intake; and five components that are harmful which include sodium, trans-fatty acids, processed 

meat, sugar sweetened beverages, and red meat intake. 

 

In the GBD analysis, exposure to harmful dietary risk is associated with stroke among neurological 

disoirders. For the purpose of attributing disease burden for harmful dietary risks other than sodium, 

TMREL was set to zero. For protective dietary risk factors, the level of intake associated with the lowest risk 

of mortality from each disease endpoint was calculated based on the 85th percentile of intake across all 

epidemiological studies included in the meta-analysis of the risk-outcome pair. Then the TMREL was 

calculated as the weighted average of these numbers using the global number of deaths from each outcome 
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as the weight. The definition of the dietary risks associated with stroke and their TMREL values are given in 

the following table. 

 
Risk  Definition TMREL range 

Diet low in fruit Average daily consumption (in grams per day) of fresh, frozen, 

cooked, canned, or dried fruit, excluding fruit juices and salted 
or pickled fruits 

310-340 g/day 

Diet low in vegetables Average daily consumption (in grams per day) of fresh, frozen, 

cooked, canned, or dried vegetables and excluding legumes and 
salted or pickled vegetables, juices, nuts and seeds, and starchy 

vegetables such as potatoes or corn 

280-320 g/day 

Diet low in whole grains Average daily consumption (in grams per day) of bran, germ, 

and endosperm in their natural proportion from breakfast cereals, 
bread, rice, pasta, biscuits, muffins, tortillas, pancakes, and other 

sources 

140-160 g/day 

Diet low in fibre Average daily consumption (in grams per day) of fibre from all 
sources including fruits, vegetables, grains, legumes, and pulses 

21-22 g/day 

Diet high in red meat Any intake (in grams per day) of red meat including beef, pork, 

lamb, and goat but excluding poultry, fish, eggs, and all 

processed meats 

0 g/day 

Diet high in sodium Average 24-hour urinary sodium excretion (in grams per day)  1-5 g/day 

 

To include the uncertainty in the TMREL, a random draw was taken from the uniform distribution of the 

interval between the ranges as given in the table above for each dietary risks, each time the population 

attributable burden was calculated. 

 

The steps in the estimation of disease burden attributable to dietary risks are shown in the following 

flowchart: 

 
Data 

 

The dietary data that were used in the models comes from multiple sources, including nationally and sub-

nationally representative nutrition surveys, household budget surveys, accounts of national sales, and United 

Nations FAO Supply and Utilization Accounts (SUA). In addition to this, new dietary recall sources were 

included from a literature search of PubMed and new sources from the yearly known survey series updates. 

A new systematic review for sodium was also conducted. To more accurately characterise the national 

availability of various food groups, more disaggregated data on food commodities was used, that were 

include in FAO SUA and recreated the national availability of each food group based on the GBD definition 

of the food group.  
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Missing country-year data was modelled from FAO using a spatiotemporal Gaussian process regression and 

lag‐distributed country income as the covariate. For nutrient availability, the data from Global Nutrient 

Database was used.1 For each dietary factor, the global age pattern of consumption based on nutrition 

surveys (ie, 24-hour diet recall) was estimated and applied that age pattern to the all-age data (availability, 

sales and household budget surveys) before the data source bias adjustment. 

 

For all dietary risks other than sodium, GBD considers a 24-hour dietary recall as the gold standard, and 

cross-walked other methods of assessment to the gold standard definition. For sodium, the 24-hour urinary 

sodium was considered as the gold standard. To estimate the 24-hour urinary sodium based on dietary 

sodium, a crosswalk adjustment was performed between these two types of data. The bias adjustment factors 

for non-gold standard data points were determined using MR-BRT (a network meta-regression).  

 

Modelling strategy 

 

ST-GPR framework was used to estimate the mean intake of each dietary factor by age, sex, country, and 

year. In this analysis, lag-distributed income was removed as a covariate from the models and country-level 

energy availability was added. 

 

To characterise the distribution of each dietary factor at the population level, ensemble approach was used to 

separately fit 12 distributions for individual-level microdata to specific to each data source’s sampled 

population. The respective goodness of fit of each family was assessed, and a weighting scheme was 

determined to optimise overall fit to the unique distribution of each risk factor. A global mean of the weights 

for each risk factor’s data sources was created. Then the standard deviation of each population’s 

consumption was determined through a linear regression that captured the relationship between the standard 

deviation and mean of intake in nationally representative nutrition surveys using 24-hour diet recalls: 

 

𝑙𝑛 (𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛)  =  𝛽0  +  𝛽1  ×  𝑙𝑛 (𝑀𝑒𝑎𝑛𝑖) 

 

Then the coefficients of this regression were applied to the outputs of ST-GPR model to calculate the 

standard deviation of intake by age, sex, year, and country. Within-person variation was also quantified the 

in consumption of each dietary component and adjusted the standard deviations accordingly. 

 

The most recent epidemiological evidence assessing the relationship between each dietary risk factor and 

stroke was used in the relative risk analysis. Additionally, based on the most recent epidemiological 

evidence and the newly developed methods for characterising the risk curve, the dose-response curve of 

relative risks for all dietary risks was updated. The effect of diet high in sodium on stroke was estimated 

based on its effect on systolic blood pressure. 

 

The effects of dietary risks on stroke is mediated through high systolic blood pressure, cholesterol, and 

fasting plasma glucose. To incorporate the age trend in the relative risks for stroke diseases due to metabolic 

risk factors, the median age-at-event across all cohorts was identified which was considered as the reference 

age group. The newly estimated risk curves were then assigned to this reference age group. The percentage 

change in relative risks was derived between each age group and the reference age group by averaging 

percentage changes in relative risks of all metabolic mediators. Estimates of exposure to dietary risks and 

relative risks for stroke were then used to calculate the population attributable fractions for stroke 

attributable to dietary risks. 

 

Reference 

 

1. Schmidhuber, Josef, et al. The Global Nutrient Database: Availability of Macronutrients and 

Micronutrients in 195 Countries from 1980 to 2013. Lancet Planetary Health. 2018, 2: 8. 
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F4. High fasting plasma glucose 

  

In the GBD analysis, exposure to high fasting plasma glucose (FPG) is associated with the increased risk for 

stroke and Alzheimer’s disease and other dementias among the neurological disorders. For the purpose of 

attributing disease burden to high FPG, the TMREL was estimated in the range of for FPG is 4.5-5.4 mmol/L. 

This was calculated by taking the person-year weighted average of the levels of fasting plasma glucose that 

were associated with the lowest risk of mortality in the pooled analyses of prospective cohort studies.1 

 

The steps in the estimation of high fasting plasma glucose are shown in the following flowchart: 

 

 
 

Data 

 

The data inputs were derived from estimates of mean FPG in a representative population, individual-level 

data of fasting plasma glucose measured from surveys, and estimates of diabetes prevalence in a 

representative population. Data sources that did not report mean FPG or prevalence of diabetes were 

excluded from analysis. When a study reported both mean FPG and prevalence of diabetes, the mean FPG 

for exposure estimates were used. Where possible, individual-level data superseded any data described in a 

study. Individual-level data were aggregated to produce estimates for each 5-year age group, sex, location, 

and year of a survey. 

 

Several processing steps were performed to the data in order to address sampling and measurement 

inconsistencies to ensure comparability across data. 

 

1. Small sample size: Estimates in a sex and age group with a sample size <30 persons is considered a 

small sample size. In order to avoid small sample size problems that may bias estimates, data are 

collapsed into the next age group in the same study till the sample size reach at least 30 persons. The 

intent of collapsing the data is to preserve as much granularity between age groups as possible. If the 

entire study sample consists of <30 persons and did not include a population‐weight, the study is 

excluded from the modelling process. 

2. Crosswalks: Mean FPG from diabetes prevalence were predicted using an ensemble distribution. The 

distribution of FPG was characterized using individual‐level data. Before predicting mean FPG from 

prevalence of diabetes, we ensured that the prevalence of diabetes was based on the reference case 

definition FPG >126 mg/dL (7 mmol/L) or on treatment.  

 

Modelling strategy 

 

Exposure estimates are produced for every year between 1980 to 2019 for each national and subnational 

location, sex, and for each 5-year age group starting from 25 years. A ST-GPR framework was used to 

model the mean fasting plasma glucose at the location-, year-, age-, and sex-level.  

 

FPG is frequently tested or reported in surveys aiming at assessing the prevalence of diabetes mellitus. In 

these surveys, the case definition of diabetes may include both a glucose test and questions about treatment 

for diabetes. People with positive history of diabetes treatment may be excluded from the FPG test. Thus, 

the mean FPG in these surveys would not represent the mean FPG in the entire population. In this event, the 

prevalence of diabetes was estimated assuming a definition of FPG>126 mg/dL (7mmol/L), then 
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crosswalked it to our reference case definition, and then predicted mean FPG. 

 

To inform our estimates in data-sparse countries, a range of covariates were systematically tested, and 

selected age specific prevalence of obesity as a covariate based on direction of the coefficient and 

significance level. 

 

Mean FPG is estimated using a mixed-effects linear regression, run separately by sex: 

 

logit(FPGc,a,t) =  β0 + β1poverweightc,a,t
+ ∑ βkIA[a]

16

k=2

+ αs + αr + αc + ϵc,a,t 

 

where poverweightc,a,t
 is the prevalence of overweight, IA[a] is an indicator variable for a fixed effect on a 

given 5-year age group, and  αs αr αcare random effects at the super-region, region, and country level, 

respectively.  The estimates were then propagated through the ST-GPR framework to obtain 1000 draws for 

each location, year, age, and sex. 

 

Relative risks for stroke and Alzheimer’s disease and other dementias were obtained from dose-response 

meta-analysis of prospective cohort studies. For stroke, age-specific RRs were estimated using DisMod-MR 

2.1 with log (RR) as the dependent variable and median age at event as the independent variable with an 

intercept at age 110. Estimates of exposure to high FPG and relative risks for stroke and Alzheimer’s 

disease and other dementias were then used to calculate the population attributable fractions for each of 

these disease attributable to high FPG.  
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F5. High body-mass index 

 

In the GBD analysis, exposure to high-body-mass index (BMI) is associated with increased risk for stroke 

and Alzheimer’s disease and other dementias among the neurological disorders. For the purpose of 

attributing disease burden to high BMI, TMREL exposure level for BMI in adults (ages 20+) was estimated 

in the range of 20 to 25 kg/m2 was determined based on the BMI level that was associated with the lowest 

risk of all-cause mortality in prospective cohort studies The risk-outcome pairs to attribute burden of stroke 

and Alzheimer’s disease and other dementias to high BMI were defined based on the strength of available 

evidence supporting a causal effect of BMI in meta-analysis. To include the uncertainty in the TMREL, a 

random draw was taken from the uniform distribution of the interval between 20 and 25 kg/m2 each time the 

population attributable burden was calculated.  

 

The steps in the estimation of high body-mass index are shown in the following flowchart: 

 

 
 

Data 

  

A systematic review was conducted to identify studies providing nationally or sub-nationally representative 

estimates of overweight prevalence, obesity prevalence, or mean BMI. New data were also added from 

update of known survey series. Representative studies providing data on mean BMI or prevalence of 

overweight or obesity were included. For adults, studies were included if they defined overweight as 

BMI≥25 kg/m2 and obesity as BMI≥30 kg/m2, or if estimates using those cutoffs could be back-calculated 

from reported categories. Studies were excluded if using non-random samples (eg, case-control studies or 

convenience samples); conducted among specific subpopulations (eg, pregnant women, racial or ethnic 

minorities, immigrants, or individuals with specific diseases); using alternative methods to assess adiposity 

(eg, waist-circumference, skin-fold thickness, or hydro densitometry); having sample sizes of less than 20 

per age-sex group; or provided inadequate information on any of the inclusion criteria.  

 

Where individual-level survey data were available, mean BMI was computed using weight and height and 

then the BMI was to determine the prevalence of overweight and obesity. For individuals aged over 19 

years, we considered them to be overweight if their BMI was greater than or equal to 25 kg/m2, and obese if 

their BMI was greater than or equal to 30 kg/m2. When only age in years was available, the cut-off for the 

midpoint of that year was used. Individuals who were obese were also considered to be overweight. At the 

individual level, observations with BMI<10 kg/m2 and BMI>70 kg/m2 were excluded as they were 

considered to be biologically implausible. 
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From report and literature, data were extracted on mean BMI, prevalence of overweight, and prevalence of 

obesity, measures of uncertainty for each, and sample size by the most granular age and sex groups 

available. Additionally, the same study-level covariates were extracted from microdata (measurement, 

urbanicity, and representativeness), as well as location and year.  

 

Any report or literature data provided in age groups wider than the standard 5-year age groups or as both 

sexes combined were split by age-sex using the approach used by Ng and colleagues.2 The split patterns 

were identified using sources with data on multiple age-sex groups and these patterns were applied to split 

aggregated report and literature data. Uncertainty in the age-sex split was propagated by multiplying the 

standard error of the data by the square root of the number of splits performed.  

 

Both measured and self-reported data were used. Bias in self-report data were tested compared to measured 

data, which is considered to be the gold standard. For individuals ages 15 and above, self-reported was data 

adjusted for overweight prevalence and obesity prevalence using MR-BRT models. For both overweight and 

obesity, sex-specific MR-BRT models were fit on the logit difference between measured and self-reported 

with a fixed effect on super-region. 

 

Modelling strategy 

 

After adjusting for self-report bias and splitting aggregated data into 5-year age-sex groups, we used ST-

GPR to estimate the prevalence of overweight and obesity. The linear model, which when added to the 

smoothed residuals forms the mean prior for GPR is as follows:  

 

logit(overweight)c,a,t = β0 + β1energyc,t + β2SDIc,t + β3vehiclesc,t + β4agriculturec,t + ∑ βkIA[a]

21

k=5

+ αs + αr + αc 

 

logit(obesity/overweight)c,a,t = β0 + β1energyc,t + β2SDIc,t + β3vehiclesc,t + ∑ βkIA[a]

21

k=4

+ αs + αr + αc 

 

Where energy is ten-year lag-distributed energy consumption per capita, SDI is a composite index of 

development including lag-distributed income per capita, education, and fertility, vehicle is the number of 

two or four-wheel vehicles per capita, and agriculture is the proportion of the population working in 

agriculture. IA[a] is a dummy variable indicating specific age group A that the prevalence point captures, and 

αs, αr, and αc are super region, region, and country random intercepts, respectively. Random effects were 

used in model fitting but were not used in prediction. 

 

All combinations of the following covariates were tested to see which performed best in terms of in-sample 

AIC for the overweight linear model and the obesity as a proportion of overweight linear model: ten-year lag 

distributed energy per capita, proportion of the population living in urban areas, SDI, lag-distributed income 

per capita, educational attainment (years) per capita, proportion of the population working in agriculture, 

grams of sugar adjusted for energy per capita, grams of sugar not adjusted for energy per capita, and the 

number of two or four-wheeled vehicles per capita. These candidate covariates were selected based on 

theory as well as reviewing covariates used in other publications. The final linear model was selected based 

on: 1) if the direction of covariates matched what is expected from theory, 2) all the included covariates 

were significant, and 3) minimizing in-sample AIC. The covariate selection process was performed using the 

dredge package in R. 

 

The new version of ST-GPR incorporates information about data density into the process for smoothing over 

space and time. Estimates in areas or years with few observations have more weight on regional 

observations. To specify the distribution of time weights and space weights, values of lambda=0.2 and 

zeta=0.05 were used, respectively. GBD used a value of omega=1.0 for the distribution of age weights. The 

GPR scale parameter to set to 20, and used the default global cutoff setting for amplitude. 

 

To estimate the mean BMI for adults in each country, age, sex, and time period 1980-2017, the following 

nested hierarchical mixed-effects model was used, which fit restricted maximum likelihood on data from 

sources containing estimates of all three indicators (prevalence of overweight, prevalence of obesity, and 

mean BMI), in order to characterise the relationship between overweight, obesity, and mean BMI: 

 

log (BMIc,a,s,t) = β0 + β1owc,a,s,t + β2obc,a,s,t + β3sex + ∑ βkIA[a]
20
k=4 + αs(1 + owc,a,s,t + obc,a,s,t) + αr(1 + owc,a,s,t + obc,a,s,t) +

αc(1 + owc,a,s,t + obc,a,s,t) + ϵc,a,s,t 
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where owc,a,s,t is the prevalence of overweight in country c, age a, sex s, and year t, obc,a,s,tis the prevalence 

of obesity in country c, age a, sex s, and year t, sex is a fixed effect on sex, IA[a] is an indicator variable for 

age, and αs, αr and α are random effects at the super-region, region, and country, respectively.  

 

1,000 draws of the regression coefficients were applied to the 1,000 draws of overweight prevalence and 

obesity prevalence produced through ST-GPR to estimate 1,000 draws of mean BMI for each country, year, 

age, and sex. This approach ensured that overweight prevalence, obesity prevalence, and mean BMI were 

correlated at the draw level and uncertainty was propagated. 

 

 Ensemble distribution approach was used to fit ensemble weights by source and sex, with source and sex 

specific weights averaged across all sources included to produce the final global weights. The ensemble 

weights were fit on measured microdata. One thousand draws of BMI distributions for each location, year, 

age group, and sex estimated were produced by fitting an ensemble distribution using 1,000 draws of 

estimated mean BMI, 1,000 draws of estimated standard deviation, and the ensemble weights. Estimated 

standard deviation was produced by optimizing a standard deviation to fit estimated overweight prevalence 

draws and estimated obesity prevalence draws. 

 

Risk-outcome pairs were based on the strength of available evidence supporting a causal effect. The relative 

risk per 5-unit change in BMI for stroke and Alzheimer’s disease and other dementias endpoint was obtained 

from meta-analyses, and where available, pooled analyses of prospective observational studies. In cases 

where a relative risk per 5-unit change in BMI was not available, the dose-response meta-analysis was 

conducted using two-step generalised least squares for time trends estimation methods. Estimates of 

exposure to high BMI and relative risks for stroke and Alzheimer’s disease and other dementias were then 

used to calculate the population attributable fractions for each of these disease attributable to high BMI. 
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F6. Tobacco use 

 

Tobacco use in GBD consists mainly of smoking, secondhand smoke and chewing tobacco. We describe 

below the exposure to smoking and secondhand smoke attributable to the neurological disorders. 

 

F6.1 Smoking 

 

In the GBD analysis, exposure to smoking is associated with increased risk for stroke, Alzheimer disease 

and other dementias, Parkinson disease (protective), and multiple sclerosis among the neurological 

disorders. For the purpose of attributing disease burden to smoking, the TMREL was all individuals who 

were lifelong non-smokers, above which there could be adverse health effects. 

 

The steps in the estimation of disease burden attributable to smoking are shown in the following flowchart: 

 

Current and former smoking prevalence 

 

 
 

GBD estimates the prevalence of current smoking and the prevalence of former smoking using data from 

cross-sectional nationally representative household surveys. GBD defines current smokers as individuals 

who currently use any smoked tobacco product on a daily or occasional basis, and former smokers as 

individuals who quit using all smoked tobacco products for at least 6 months, where possible, or according 

to the definition used by the survey. Prior to modelling a complete time series for all demographic groups 

were made and adjustments for alternative case definitions as well as for data reported in non-standard age 

or sex groups. Current and former prevalence were modelled using ST-GPR.  

 

Data 

  

Primary data was extracted from individual-level microdata and survey report tabulations. Data on current, 

former, and/or ever smoked tobacco were extracted if surveys reported any combination of frequency of use 

(daily, occasional, and unspecified, which includes both daily and occasional smokers) and type of smoked 

tobacco used (all smoked tobacco, cigarettes, hookah, and other smoked tobacco products such as cigars or 

pipes resulting in 36 possible combinations. For microdata, relevant demographic information, including 

age, sex, location, and year, as well as survey metadata, including survey weights, primary sampling units, 

and strata were extracted. This information allowed us to tabulate individual-level data in the standard GBD 
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five-year age, sex groups and produce accurate estimates of uncertainty. For survey report tabulations, data 

at the most granular age-sex group provided were extracted. 

 

Crosswalk: Case definitions for smoking prevalence is current smoking of any tobacco product and former 

smoking of any tobacco product. All other data points were adjusted to be consistent with either of these 

definitions. Some sources contained information on more than one case definition and these sources were 

used to develop the adjustment coefficient to transform alternative case definitions to our case definition. 

The adjustment coefficient was the beta value derived from a linear model with one predictor and no 

intercept.  

 

Age and sex splitting: Data reported was split in broader age groups than the GBD 5-year age groups or as 

both sexes combined by adapting the method reported in Ng et al1 to split using a sex-geography-time-

specific reference age pattern. The data was separated into two sets: a training dataset, with data already 

falling into GBD sex-specific 5-year age groups, and a split dataset, which reported data in aggregated age 

or sex groups. ST‐GPR was then used to estimate sex-geography-time-specific age patterns using data in the 

training dataset. The estimated age patterns were used to split each source in the split dataset. 

 

ST-GPR model for estimating the age patterns for age-sex splitting used an age weight parameter value that 

minimizes the effect of any age smoothing. This parameter choice allowed the estimated age pattern to be 

driven by data, rather than being enforced by any smoothing parameters of the model. Because these age-sex 

split data points were to be incorporated in the final ST-GPR exposure model, a modelled age pattern for a 

given sex‐location‐year were not doubly enforce on a given aggregate data point. 

 

Modelling strategy 

 

Smoking prevalence modelling 

 

ST-GPR was used to model current and former smoking prevalence. The mean function input to GPR is a 

complete time series of estimates generated from a mixed effects hierarchical linear model plus weighted 

residuals smoothed across time, space, and age. The linear model formula for current smoking, fit separately 

by sex using restricted maximum likelihood in R, is: 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑔,𝑎,𝑡) = 𝛽0 + 𝛽1𝐶𝑃𝐶𝑔,𝑡 + ∑ 𝛽𝑘𝐼𝐴[𝑎] + 𝛼𝑠 + 𝛼𝑟 + 𝛼𝑔 + 𝜖𝑔,𝑎,𝑡

19

𝑘=2

 

 

Where CPC𝑔,𝑡 is the tobacco consumption covariate by geography 𝑔 and time 𝑡, 𝐼𝐴[𝑎] is a dummy variable 

indicating specific age group 𝐴 that the prevalence point Pg,a,t captures, and 𝛼s, 𝛼r, and 𝛼𝑔 are super region, 

region, and geography random intercepts, respectively. Random effects were used in model fitting but not in 

prediction. 

 

The linear model formula for former smoking is: 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑔,𝑎,𝑡) = 𝛽0 + 𝛽1𝑃𝑐𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝐴[𝑎],𝑔,𝑡 + 𝛽3𝐶𝑆𝑃𝐴[𝑎],𝑔,𝑡 + ∑ 𝛽𝑘𝐼𝐴[𝑎] + 𝛼𝑠 + 𝛼𝑟 + 𝛼𝑔 + 𝜖𝑔,𝑎,𝑡

20

𝑘=3

 

 

Where PctChangeA[a],gt is the percent change in current smoking prevalence from the previous year, and 

CSPA[a],gt is the current smoking prevalence by specific age group 𝐴, geography𝑔, and time 𝑡 that point Pg,a,t 

captures, both derived from the current smoking ST-GPR model. 

 

Supply-side estimation 

 

Raw data used for supply-side estimation were domestic supply (USDA Global Surveillance Database and 

UN FAO) and retail supply (Euromonitor) of tobacco. These data were age-sex split using daily smoking 

prevalence to generate number of cigarettes per smoker per day for a given location-age-sex-year. A point 

was included if it was (in cigarettes per smoker): under five (10–14 year olds); under 20 (males, 15–19 year 

olds); under 18 (females, 15–19 year olds); under 38/35 and over three (males/females, 20+ year olds). The 

mean tobacco per capita value over a 10-year window was calculated. A point was excluded if it was over 

70% of that mean value away from the mean value. The 70% limit was chosen using histograms of these 

distances. Additionally, some manual outliering was performed to account for edge cases. Finally, data 

smoothing was performed by taking a three-year rolling mean over each location-year. 

 

Imputation to fill in missing years was performed for all series to remove compositional bias from the final 

estimates. For this the log ratio of each pair of sources was modelled as a function of an intercept and nested 



78 

 

random effects on super-region, region, and location. The appropriate predicted ratio was multiplied by each 

source, and then the predictions were averaged to get the final imputed value.  

Variance was calculated both across series (within a location-year) as well as across years (within a location-

source). Additionally, if a location-year had one imputed point was, the variance was multiplied by 2. If a 

location-year had two imputed points, the variance was multiplied by 4. The average estimates in each 

location-year were the input to an ST-GPR model. For this, GBD used a simple mixed effects model, which 

was modelled in log space with nested location random effects. Subnational estimates were then further 

modelled by splitting the country-level estimates using current smoking prevalence. 

 

Exposure among current and former smokers 

 

The exposure among current smokers was estimated for two continuous indicators: cigarettes per smoker per 

day and pack-years. Pack-years incorporates aspects of both duration and amount. One pack-year represents 

the equivalent of smoking one pack of cigarettes (assuming a 20-cigarette pack) per day for one year. Since 

the pack-years indicator collapses duration and intensity into a single dimension, one pack-year of exposure 

can reflect smoking 40 cigarettes per day for six months or smoking 10 cigarettes per day for two years. 

 

To produce these indicators, individual smoking histories were simulated based on distributions of age of 

initiation and amount smoked. The simulation was informed with cross-sectional survey data capturing these 

indicators, modelled at the mean level for all locations, years, ages, and sexes using ST-GPR. The estimates 

of cigarettes per smoker per day were rescaled to an envelope of cigarette consumption based on supply-side 

data. Pack-years of exposure were estimated by summing samples from age- and time-specific distributions 

of cigarettes per smoker for a birth cohort in order to capture both age trends and time trends and avoid the 

common assumption that the amount someone currently smokes is the amount they have smoked since they 

began smoking. All distributions were age-, sex-, and region-specific ensemble distributions, which were 

found to outperform any single distribution. 

 

The exposure among former smokers was estimated using years since cessation. ST-GPR was utilised to 

model mean age of cessation using cross-sectional survey data capturing age of cessation. Using these 

estimates, ensemble distributions of years was generated since cessation for every location, year, age group, 

and sex. 

 

Relative risk and population attributable fractions 

 

Evidence supporting a causal relationship suggests that smoking is associated with stroke, Alzheimer disease 

and other dementias, Parkinson disease (protective), and multiple sclerosis among the neurological 

disorders. The effect sizes by cigarettes per smoker per day, pack-years, and years since quitting were 

synthesised from cohort and case-control studies to produce nonlinear dose-response curves using a 

Bayesian meta-regression model. For outcomes with significant differences in effect size by sex or age, sex-

or age-specific risk curves were produced. 

 

GBD estimates risk curves of former smokers compared to never smokers taking into account the rate of risk 

reduction among former smokers seen in the cohort and case-control studies, and the cumulative exposure 

among former smokers within each age, sex, location, and year group. 

 

PAFs were estimated based on the following equation: 

 

𝑃𝐴𝐹 =
𝑝(𝑛) + 𝑝(𝑓) ∫ exp(𝑥) ∗ 𝑟𝑟(𝑥) + 𝑝(𝑐) ∫ exp(𝑦) ∗ 𝑟𝑟(𝑦) − 1

𝑝(𝑛) + 𝑝(𝑓) ∫ exp(𝑥) ∗ 𝑟𝑟(𝑥) + 𝑝(𝑐) ∫ exp(𝑦) ∗ 𝑟𝑟(𝑦)
 

 

Where 𝑝(𝑛) is the prevalence of never smokers, 𝑝(𝑓) is the prevalence of former smokers, 𝑝(𝑐) is the 

prevalence of current smokers, exp(𝑥) is a distribution of years since quitting among former smokers, 

𝑟𝑟(𝑥) is the relative risk for years since quitting, exp(𝑦) is a distribution of cigarettes per smoker per 

day or pack-years, and 𝑟𝑟 (𝑦) is the relative risk for cigarettes per smoker per day or pack-years. 

Cigarettes per smoker per day was used as the exposure definition for neurological outcomes associated 

with smoking. 
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F6.2 Secondhand smoke 

GBD defines secondhand smoke exposure as current exposure to secondhand tobacco smoke at home, at 

work, or in other public places. Household composition was used as a proxy for non-occupational 

secondhand smoke exposure and make the assumption that all persons living with a daily smoker are 

exposed to tobacco smoke. Surveys were used to estimate the proportion of individuals exposed to 

secondhand smoke at work. GBD only considers non-smokers to be exposed to secondhand smoke. Non-

smokers are defined as all persons who are not daily smokers. Ex-smokers and occasional smokers are 

considered non-smokers in this analysis.  

 

In the GBD analysis, exposure to secondhand smoke is associated with increased risk for stroke among the 

neurological disorders. The TMREL for secondhand smoke is zero exposure among non-smokers, meaning 

that non-smokers would not live with any primary smokers. 

 

 

Data 

 

To calculate the proportion of non-smokers who live with at least one smoker, GBD uses unit record data on 

household composition, which included the ages and sexes of all persons living in the same 

household. The data sources included representative major survey series with a household composition 

module, including the Demographic Health Surveys (DHS), the Multiple Indicator Cluster Surveys (MICS), 

and the Living Standards Measurement Surveys (LSMS); and national and subnational censuses, which 

included those captured in the IPUMS project and identified using the Global Health Data Exchange catalog. 

 

To calculate the proportion of individuals exposed to secondhand smoke at work, by age and sex, we 

used cross-sectional surveys that ask respondents about self-reported occupational secondhand smoke 

exposure. Sources include the Global Adult Tobacco Surveys, Eurobarometer Surveys, and WHO STEPS 

Surveys.   

 

Modelling strategy 

 

The probability was estimated for each person is living with a smoker and is also a non-smoker themselves 

using set theory. First, household composition data were used at the individual level to capture the ages and 

sexes of each person in the household. Second, surveys were analysed with both household composition data 

and tobacco use questions and determined that the distribution of household size, mean age of the household 

members, and the age distribution were not significantly different between households with and without a 

self-reported smoker. Since, household composition did not vary between smokers and non-smokers, 

primary daily smoking prevalence model was used to calculate the probability that each household member 

is a daily smoker. Next, the probability of the union of sets on each individual household member was used 

to calculate the overall probability that at least one of the other household members was a daily smoker. 

 

Occupational exposure was incorporated by modelling prevalence of current exposure to secondhand smoke 

at work, by age, sex, location, and year, using ST-GPR. In order to avoid double counting the probability 

was calculated for an individual that is exposed through either non-occupational exposure or occupational 
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exposure, given their age, sex, and household composition. This probability of exposure was then multiplied 

by the probability that the individual is not a smoker themselves (ie, 1 minus primary daily smoking 

prevalence for that person’s location, year, age, and sex). These individual-level probabilities were then 

collapsed to produce average probabilities of exposure by location, year, age, and sex. 

 

These probabilities were modelled in the ST-GPR framework, which generates exposure estimates from a 

mixed effects hierarchical linear model plus weighted residuals smoothed across time, space, and age. The 

linear model formula was fit separately by sex using restricted maximum likelihood in R. Sex-specific 

overall daily smoking prevalence for adults was used as a country-level covariate in the model. The overall 

male adult daily smoking prevalence was used as the covariate for females of all ages. The overall female 

adult daily smoking prevalence was used as the covariate for males. 

 

All input data points from the probability calculation had a measure of uncertainty (variance and sample 

size) coming from the uncertainty of the primary smoking prevalence model and the sample size from the 

unit record data going into the modelling process. Geographical random effects were used in model fitting 

but were not used in prediction. 

 

The burden of stroke associated with secondhand smoke was estimated for adults greater than or equal to 25 

years. The country-specific relative risks were created using integrated exposure response curves (IER) for 

PM2.5 air pollution. The estimates of exposure to secondhand smoke and relative risks for stroke were then 

used to calculate the population attributable fractions for stroke attributable to secondhand smoke.  
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F7. Kidney dysfunction 

  

The kidney dysfunction risk factor exposure is divided into four categories of renal function defined by 

urinary albumin to creatinine ratio (ACR) and estimated glomerular filtration rate (eGFR): 

 

 Albuminuria with preserved eGFR (ACR >30 mg/g & eGFR >=60 ml/min/1.73m2); this corresponds to 

stages 1 and 2 chronic kidney disease (CKD) in the Kidney Disease Improving Global Outcomes 

(KDIGO) classification 

 CKD stage 3 (eGFR of 30-59 ml/min/1.73m2); 

 CKD stage 4 (eGFR of 15-29 ml/min/1.73m2); and 

 CKD stage 5 (eGFR <15ml/min/1.73m2, not (yet) on renal replacement therapy). 

 

In the GBD analysis, the exposure to kidney dysfunction is associated with increased risk for stroke among 

the neurological disorders. For the purpose of attributing disease burden to kidney dysfunction, the TMREL 

is ACR 30 mg/g or less and eGFR greater than 60ml/min/1.73m2. An ACR above 30 mg/g and eGFR below 

60ml/min/1.73m2 have been demonstrated in the literature to be the thresholds at which increased 

cardiovascular events occur secondary to kidney dysfunction.1-10 

 

The steps in the estimation of disease burden attributable to kidney dysfunction are shown in the following 

chart: 

 

 
 

Data 

 

Population based surveys and cohort studies were used to collect the data for kidney dysfunction. Studies were 

included if it was population representative, reporting albuminuria with preserved GFR (GFR< 60 ml/min/ 

1.73m2). 

 

Modelling strategy 

 

A two-stage pooled meta-analysis was used to calculate relative risks for stroke. The relative risk of stroke was 

first determined within each cohort, and then a pooled analysis of cohort-level relative risks was performed 

using a random effects meta-analysis approach. Uncertainty intervals largely overlapped for the relative risks of 

fatal and nonfatal cardiovascular events from kidney dysfunction. Thus relative risks from the combined 

analysis for fatal and nonfatal cardiovascular outcomes was used in the relative risk estimation.  
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Burden attributable to kidney dysfunction was estimated for stroke using a pooled cohort analysis of six cohort 

studies from the CKD-PC was explored. The data from cohort studies was ran through MR-BRT meta‐

regression to determine the relationship between age and stroke based on exposure to kidney dysfunction. 

Estimates were nested within cohorts. A three-degree spline was placed on age with decreasing monotonicity. 

Relative risk estimates for stroke above age 85 were set equal to the risk at age 85 to control for lack of data in 

older age groups.  

𝑃𝐴𝐹 =
∑ 𝑃𝑖

𝑛
𝑖=1  (𝑅𝑅𝑖 − 1)

∑ 𝑃𝑖
𝑛
𝑖=1 (𝑅𝑅𝑖 − 1) + 1

 

 
Some sensitivity analyses were done with and without controlling for blood pressure. This is because kidney 

dysfunction increases the risk of stroke directly, as well as through blood pressure. Generally, the relative risk 

of stroke was lower when controlling for blood pressure. This lower risk that controlled for hypertension was 

chosen for a more conservative estimate. The fatal and nonfatal burden for stroke attributable to the categorical 

exposure to impaired kidney function was calculated using the following equation: 

 

PAF based on categorical exposure where RRi is the relative risk for exposure level i, Pi is the proportion of the 

population in that exposure category, and n is the number of exposure categories. Epidemiological evidence for 

estimating relative risk of stroke due to kidney dysfunction were obtained from the following studies: 
 

Stroke 

Chronic Kidney Disease Prognosis Consortium (CKD-PC). Chronic Kidney Disease Prognosis 
Consortium GBD 2016 Impaired Kidney Function Relative Risk Meta-Analysis. 

National Heart, Lung, and Blood Institute, National Institutes of Health (NIH). United States 
Atherosclerosis Risk in Communities Study. Bethesda, United States: National Heart, Lung, and 
Blood Institute, National Institutes of Health (NIH). 

International Diabetes Institute (IDI). Australia Diabetes, Obesity and Lifestyle Study 1999-2000. 
Melbourne, Australia: International Diabetes Institute (IDI) 

National Heart, Lung, and Blood Institute, National Institutes of Health, University of California, Los 

Angeles (UCLA), University of Minnesota. United States Multi-Ethnic Study of Atherosclerosis First 

Examination 2000-2002. Bethesda, United States: National Heart, Lung, and Blood Institute, 
National Institutes of Health Uppsala University. Sweden Uppsala Longitudinal Study of Adult Men. 
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F8. Lead exposure 

 

In the GBD analysis, chronic lead exposure, measured as micrograms of lead per gram of bone (µg/g), is 

associated with increased systolic blood pressure and stroke among the neurological disorders. For the 

purpose of attributing disease burden to lead exposure, the TMREL was estimated at 2.0 µg/dL. This level 

was based on ambient sources of lead that would be impossible to eliminate1 and a review of the literature 

indicating no consistent statistically significant estimates of increased relative risks at lower levels of blood 

lead.  

 

The steps in the estimation of lead exposure are shown in the following flowchart: 

 

 
 

The input data for lead exposure is primarily extracted from literature reports of blood lead levels, in 

addition to a few blood lead surveys. Blood lead values are derived from studies that take blood samples and 

analyse them using various techniques to determine the level of lead present. The second pathway of burden, 

bone lead exposure, was estimated by calculating a cumulative blood lead index for cohorts using estimated 

blood lead exposure over their lifetime. The cumulative blood lead index is then used to estimate bone lead 

using a scalar defined in literature.2  

 

MR-BRT was used to crosswalk data. Blood lead exposure data are reported in the literature as either an 

arithmetic mean, a geometric mean, or a median. To standardise the data, all values reported were adjusted 

as a geometric mean or median to reflect what they would have been had the study reported the arithmetic 

mean. Additionally, the data come from locations of varying urbanicity (proportion of individuals in a given 

location living in an urban area). Because the urbanicity of a location was expected to affect the estimates, 

data was adjusted so that they were equivalent to the average urbanicity of the country from which the data 

were collected.  
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Modelling strategy 

 

Lead exposure was modelled using ST-GPR technique. In order to predict blood lead in country-years with 

insufficient data, covariates that have been produced across time and space relevant to this analysis were used. 

For blood lead exposure, the covariates determined to have predictive ability were the Socio-demographic Index 

(SDI), urbanicity, the combined number of two- and four-wheeled vehicles per capita, and a covariate indicating 

whether leaded gasoline had been phased out in a given country-year (smoothed over the first five years of 

phase-out to reflect its gradual implementation). ST-GPR was used to produce estimates of mean and standard 

deviation of blood lead for all age groups, for both sexes, and for all GBD locations from 1970 to 2019. The 

linear regression equation is shown below. 

 

Log(data) ~ sdi+urbancity + (leaded gas outphase*vehicles per capita) + (1|level_1) 

 

SDI = Socio-demographic Index 

Urbanicity = proportion of population living in urban areas 

Leaded gas outphase = whether or not a country has banned use of leaded gasoline Vehicles per capita = 

number of 2- and 4-wheeled vehicles per capita 

(1|level_1) = super-region-level random effects 

 

Ensemble modelling techniques were used to find an optimal global distribution by fitting a variety of 

distributions to the available blood lead microdata. This was a common update for all continuous risk 

factors. The ST-GPR mean and standard deviation estimates for blood lead were used with the global 

distribution shape to determine distributions for blood lead exposure. Eleven different probability 

distributions included were: exponential, gamma, inverse-gamma, mirrored gamma, log-logistic, Gumbel, 

mirrored Gumbel, Weibull, log-normal, normal, and beta. A little over 80% of the final distribution was log-

logistic (35%), inverse-gamma (18%), log-normal (16%), or mirrored Gumbel (12%), with the seven other 

distributions comprising the remaining 20%. 

 

To calculate blood lead over the lifetime of a given cohort, blood lead was assumed to grow linearly from 

2.0 µg/dL in 1920 to the value for that cohort in 1970. Using the exposure distributions of blood lead over 

time and space, cohorts were constructed such that lifetime blood lead could be expressed as a curve over 

each year of life. The area under this curve was the cumulative blood lead index, which was used to estimate 

bone lead in a given year with the aforementioned scalar. 

 

Bone lead level is paired with systolic blood pressure, and subsequently to stroke to which systolic blood 

pressure is paired. The bone lead relative risks were taken from a 2008 meta-analysis that showed a 0.26 

mmHg increase in systolic blood pressure (SBP) per 10 µg/g increase in bone lead (95% CI: 0.02 to 0.50).3 

Because bone lead is associated with increases in SBP, the burden of stroke attributable to exposure to bone 

lead is mediated through SBP. As such, the relative risks for bone lead exposure are all the same as the 

relative risks that SBP has for stroke. Estimates of exposure to bone lead level and relative risks for stroke 

were then used to calculate the population attributable fractions for stroke attributable to bone lead level. 
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F9.  High low-density lipoprotein cholesterol level 

 

In the GBD analysis, exposure to high low-density lipoprotein (LDL) cholesterol level is associated with the 

increased risk for stroke among the neurological disorders. For the purpose of attributing disease burden to high 

LDL cholesterol level, the TMREL with a uniform distribution between 0.7 and 1.3 mmol/L was used based on 

the evidence from meta-analysis of randomised trails and studies of PCSK-9 inhibitors that outcomes can be 

improved even at low levels of LDL-cholesterol, below 1.3 mmol/L3.1,2 To include the uncertainty in the 

TMREL, GBD took a random draw from the uniform distribution of the interval between 0.7 mmol/L and 1.3 

mmol/L each time the population attributable burden was calculated.  

   

The steps in the estimation of disease burden attributable to high LDL cholesterol level are shown in the 

following chart: 

 

 

Data 

 

Data on blood levels for low-density lipoprotein, total cholesterol, triglyceride, and high-density lipoprotein was 

extracted from literature and from household survey microdata and reports. The data was adjusted for total 

cholesterol, triglycerides, and high-density lipoprotein using the correction approach described in the Lipid 

Crosswalk section below. Studies were included if they were population-based and measured total LDL, total 

cholesterol (TC), high-density lipoprotein (HDL), and/or triglycerides (TG) were available from blood tests or if 

LDL was calculated using the Friedewald equation. 

  

Assumption was made that the data was representative of the location if the geography or population chosen 

were not related to the diseases and if it was not an outlier compared to other data in the country or region. A 

candidate source was excluded if the quality of study did not warrant a valid estimate because of selection (non-

representative populations) or if the study did not provide methodological details for evaluation. In a small 

number of cases, a data point was considered to be an outlier candidate if the level was implausibly low or high 

based on the data from other countries. 

 

Where possible, individual-level data on LDL estimates were extracted from survey microdata and these were 

collapsed across demographic groupings to produce mean estimates in the standard GBD five-year age-sex 

groups. If microdata were unavailable, information from survey reports or from literature were extracted along 

with any available measure of uncertainty including standard error, uncertainty intervals, and sample size. 

Standard deviations were also extracted. Where LDL was reported split out by groups other than age, sex, 

location, and year (eg, by diabetes status), a weighted mean was calculated. 

 

Lipid crosswalk: Total cholesterol consists of three major components: LDL, HDL, and TG. LDL is often 

calculated for an individual using the Friedewald equation, shown below: 
 

𝐿𝐷𝐿 = 𝑇𝐶 − (𝐻𝐷𝐿 +
𝑇𝐺𝐿

2.2
) 
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This relationship at the individual level was utilised to impute the mean LDL for a study population when only 

data on TC, HDL, and TGL were available. Because studies report different combinations of TC, HDL, and 

TGL, a single regression was constructed to utilise all available data to evaluate the relationship between each 

lipid and LDL at the population level. The following regression was used: 
 

𝐿𝐷𝐿 = 𝑖𝑛𝑑𝑡𝑐𝛽1𝑇𝐶 − (𝑖𝑛𝑑ℎ𝑑𝑙𝛽2𝐻𝐷𝐿 + 𝑖𝑛𝑑𝑡𝑔𝑙𝛽3𝑇𝐺𝐿) + ∑ 𝛼𝑙𝐼𝑙 

 

Where 𝑖𝑛𝑑tc, 𝑖𝑛𝑑hd𝑙, and 𝑖𝑛𝑑tg𝑙 are indicator variables for whether data are available for a given lipid, 

𝐼𝑙  is an indicator variable a given set of available lipids 𝑙. 𝛼𝑙 is a unique intercept for each set of available lipid 

combinations. For sources that only reported TC and HDL, 𝛼𝑙 =TC, KDL should account for the missing lipid data, 

ie, TGL. The form of this regression allows us to estimate the betas for each lipid using all available data. As a 

sensitivity analysis, separate regressions for each set of available lipids was ran and found that the single 

regression method had much lower root-mean-squared error. A comparison of the observed versus predicted 

LDL for each set of available lipids. Almost no relationship was found between LDL and HDL or TGL when 

TC was not available, so only studies that reported TC were adjusted to LDL.  

 

Age and sex splitting: Prior to modelling, data provided in age groups wider than the GBD five-year age groups 

were processed using the approach outlined in Ng and colleagues.3 Briefly, age-sex patterns were identified 

using person-level microdata, and estimate age-sex-specific levels of total cholesterol from aggregated results 

reported in published literature or survey reports. In order to incorporate uncertainty into this process and 

borrow strength across age groups when constructing the age-sex pattern, a model with auto-regression on the 

change in mean LDL over age groups was used. Draws of the age-sex patterns were combined with draws of the 

input data needing to be split in order to calculate the new variance of age-sex-split data points. 

 

Modelling strategy 

 

Exposure estimates were produced from 1980 to 2019 for each national and subnational location, sex, and for 

each five-year age group starting from 25. ST-GPR framework was used to model the mean LDL at the 

location-, year-, age-, and sex-level. 

   

The first step of the ST-GPR framework requires the creation of a linear model for predicting LDL at the 

location-, year-, age-, and sex-level. Covariates for this model were selected in two stages. First a list of 

variables with an expected causal relationship with LDL was created based on significant association found 

within high-quality prospective cohort studies reported in the published scientific literature. The second stage in 

covariate selection was to test the predictive validity of every possible combination of covariates in the linear 

model, given the covariates selected above. This was done separately for each sex. Predictive validity was 

measured with out of sample root‐mean‐squared error. 

 

An ensemble model of the 50 models was used with the lowest root-mean-squared (RMSE) error for each sex. 

This allows us to utilise covariate information from many plausible linear mixed-effects models. The 50 models 

were each used to predict the mean LDL for every age, sex, location, and year, and the inverse-RMSE-weighted 

average of this set of 50 predictions was used as the linear prior. The results of the ensemble linear model were 

used for the first stage in an ST-GPR model. The result of the ST-GPR model are estimates of the mean LDL 

for each age, sex, location, and year. 

 

The standard deviation of LDL within a population was estimated for each national and subnational location, 

sex, and five-year age group starting from age 25 using the standard deviation from person-level and some 

tabulated data sources. The shape of the distribution of LDL was estimated using all available person-level 

microdata sources, which was a subset of the input data into the modelling process. Briefly, an ensemble 

distribution created from a weighted average of distribution families was fit for each individual microdata 

source, separately by sex. The weights for the distribution families for each individual source were then 

averaged and weighted to create a global ensemble distribution for each sex. 

  

Evidence suggests that the relative risks for LDL and TC are very similar4 and there is a strong linear correlation 

between TC and LDL at the individual level, therefore relative risks reported for TC was used to approximate 

the relative risks for LDL. DisMod-MR 2.1 pooled the effect sizes from included studies and generate a dose-

response curve for stroke associated with LDL. The tool enabled us to incorporate random effects across studies 

and include data with different age ranges. Relative risks (RRs) were used universally for all countries and 

produce RRs with uncertainty and covariance across ages, considering the uncertainty of the data points. 
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RRs for stroke were obtained from meta-regressions of pooled epidemiological studies: the Asia Pacific Cohort 

Studies Collaboration and the Prospective Studies Collaboration. RRs for stroke were modelled with log (RR) 

as the dependent variable and median age at event as the independent variable. Assumption that there is not a 

protective effect of LDL was made and therefore did not include an RR for ages 80+. Estimates of exposure to 

high LDL and relative risks for stroke was then used to calculate the population attributable fractions for stroke 

attributable to high LDL. 
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F10.  Alcohol use 

 

Exposure is defined as the grams per day of pure alcohol consumed among individuals among current drinkers. 

Current drinkers is defined as the proportion of individuals who have consumed at least one alcoholic beverage 

(or some approximation) in a 12-month period. Additional indicators such as number of tourists within a 

location, their duration of stay and unrecorded alcohol stock were also used to adjust alcohol exposure estimates 

to account for different types of biases. 

 

In the GBD analysis, alcohol use is associated with the increased risk for stroke among the neurological 

disorders. For attributing disease burden attributable to alcohol use, the TMREL was chosen as the exposure 

that minimises the risk of suffering burden from any given cause related to alcohol. The risk was weighted for a 

particular cause in GBD aggregation by the proportion of DALYs due to that cause. 

 

The steps in the estimation of alcohol use are shown in the following chart: 

 

FAO, domestic supply of 
alcohol in tonnes

WHO, liters per year

Crosswalk using
mixed effect model on 
data series indicators 
and region random 

effects

Cohort studies & case control 
studies

Meta-analysis of relative 
risks, by cause

Relative risk 
function by, 

cause, sex, dose Population 
attributable 

fractions by risk, 
cause, age, sex, 
and geography

Population 
attributable 

fractions by risk 
aggregate, cause, 

age, sex, and 
geography

Deaths, YLLs, 
YLDs, and DALYs 
attributable to 

each risk by age, 
sex, year, 

geography

Calculate PAFs using 
exposure, relative risks, 

individual-level distirbution,  
and TMREL
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Nonfatal

Burden estimation

Cause of death

Covariates

Input Data
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YLDs, DALYs for 
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year, geography

Location-level 
covariates

UNWTO tourist 
estimates

Spatio-temporal 
Gaussian process 

regression
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Current drinker 
proportion 

by geography, 
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Gaussian process 
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Location-level 
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Household and health 
examination surveys

Administrative data

Alcohol LPC 
by 

geography, 
year

Current drinker 
proportions  by 

geography, 
year, sex, age

Alcohol g/day 
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Published estimates
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Household and health 
examination surveys

Ensemble distribution 
model

Individual-level exposure 
distribution

FARS
Adjust MVA PAF to 
account for victims

Crosswalk using
MR BRT to adjust for 

recall period

Age and sex split

 

Data 

 

A systematic review of the literature was performed to extract data on the primary indicators. The Global Health 

Exchange database was searched for population survey data containing participant-level information from 

which the required alcohol use indicators on current drinkers and alcohol consumption was formulated. Data 

sources were included if they captured a sample representative of the geographical location under study.  
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Estimates of current drinking prevalence were split by age and sex where necessary. First, studies that 

reported prevalence for both sexes were split using a region-specific sex ratio estimated using MR-BRT. 

Second, where studies reported estimates across non-GBD age groups, these were split into standard five-

year age groups using the global age pattern estimated by ST-GPR. To allow for the inclusion of data that 

did not meet our reference definition for current drinking, two crosswalks were performed using MR-BRT. 

The first crosswalk converted estimates of one-month drinking prevalence to what they would be if data 

represented estimates of 12-month drinking prevalence. This crosswalk incorporated two binary covariates: 

male and age ≥ 50. The second crosswalk converted estimates of one-week drinking prevalence to 12-month 

drinking prevalence. This crosswalk incorporated age < 20 and male as covariates. The covariates utilised in 

both crosswalks were included as both x and z covariates. A uniform prior of 0 was set as the upper bound 

for the beta coefficients to enforce the logical constraint that one-month and one-week prevalence could not 

be greater than 12-month prevalence. 

 

The raw data for supply-side estimation are domestic supply (WHO GISAH; FAO) and retail supply 

(Euromonitor) of litres of pure ethanol consumed. Domestic supply is calculated as the sum of production 

and imports, subtracting exports. The WHO and FAO sources were combined, so that FAO data were only 

used if there were no data available for that location-year from WHO. This was done because the WHO 

source takes into consideration FAO values when available. Since the WHO data are given in more granular 

alcohol types, the following adjustments were made: 
 

𝐿𝑃𝐶 𝑃𝑢𝑟𝑒 𝐸𝑡ℎ𝑎𝑛𝑜𝑙 = 0.13 ∗ (
𝑊𝑖𝑛𝑒

0.973
) 

 

𝐿𝑃𝐶 𝑃𝑢𝑟𝑒 𝐸𝑡ℎ𝑎𝑛𝑜𝑙 = 0.05 ∗ (
𝐵𝑒𝑒𝑟

0.989
) 

 

𝐿𝑃𝐶 𝑃𝑢𝑟𝑒 𝐸𝑡ℎ𝑎𝑛𝑜𝑙 = 0.4 ∗ (
𝑆𝑝𝑖𝑟𝑖𝑡𝑠

0.91
) 

 

Three outliering strategies were used to omit implausible datapoints and data that created implausible model 

fluctuations. First, estimates from the current drinking model were used to calculate the grams of alcohol 

consumed per drinker per day. A point was outliered if the grams of pure ethanol per drinker per day for a given 

source‐location‐year is greater than 100 (approximately ten drinks). In the second round of outliering, the mean 

liters per capita value over a ten‐year window was calculated. If a point is over 70% of that mean value away 

from the mean value, it was outliered. The 70% limit was chosen using histograms of these distances. 

Additionally, some manual outliering is performed to account for edge cases. Finally, data smoothing was 

performed by taking a three‐year rolling mean over each location‐year. 

 

Next, an imputation to fill in missing years is performed for all series to remove compositional bias from our 

final estimates. Since the data from our main sources cover different time periods, by imputing a complete time 

series for each data series, the reduced probability that compositional bias of the sources is leading to biased 

final estimates. To impute the missing years for each series, the log ratio of each pair of sources as a function of 

an intercept and nested random effects on super‐ region, region, and location was modelled. The appropriate 

predicted ratio is multiplied by the source, which generates an estimated value for the missing source. For some 

locations where there was limited overlap between series, the predicted ratio did not make sense, and a regional 

ratio was used.  

 

Finally, variance was calculated both across series (within a location-year) as well as across years (within a 

location-source). Additionally, if a location-year had one imputed point, the variance was multiplied by 2. If a 

location-year had two imputed points, the variance was multiplied by 4. The average estimates in each location-

year were the input to an ST-GPR model. This uses a mixed-effects model modelled in log space with nested 

location random effects. 

 

The data on the number of tourists and their duration of stay were obtained from the UNWTO.1 A crosswalk 

across different tourist categories was applied, similar to the one used for the litres per capita data, to arrive at a 

consistent definition (ie, visitors to a country). Estimates on unrecorded alcohol stock were obtained from data 

available in WHO GISAH database,2 consisting of 189 locations. For locations with no data available, the 

national or regional average was used. 

 

Modelling strategy 

 

While population-based surveys provide accurate estimates of the prevalence of current drinkers, they typically 

underestimate real alcohol consumption levels.3-5 As a result, the litre per capita input was considered to be a 
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better estimate of overall volume of consumption. Per capita consumption, however, does not provide age- and 

sex-specific consumption estimates needed to compute alcohol-attributable burden of disease. Therefore, the 

age‐sex pattern of consumption among drinkers were modelled from the population survey data and the overall 

volume of consumption from FAO, GISAH, and Euromonitor to determine the total amount of alcohol 

consumed within a location.  

 

For data obtained through surveys, ST-GPR was used to construct estimates for each location/year/age/sex. ST-

GPR was chosen due to its ability to leverage information across the nearby locations or time periods. The 

alcohol litres per capita (LPC) data, as well as the total number of tourists, was modeled using ST-GPR. Given 

the heterogeneous nature of the estimates on unrecorded consumption, 1,000 draws from the uniform 

distribution of the lowest and highest estimates were taken. This incorporated the diffuse uncertainty within the 

unrecorded estimates reported.  

 

The alcohol LPC was adjusted for unrecorded consumption using the following equation: 
 

𝐴𝑙𝑐𝑜ℎ𝑜𝑙 𝐿𝑃𝐶 =
𝐴𝑙𝑐𝑜ℎ𝑜𝑙 𝐿𝑃𝐶

(1 − % 𝑈𝑛𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑)
 

 

The estimates for alcohol LPC were then adjusted for tourist consumption by adding in the per capita rate of 

consumption abroad and subtracting the per capita rate of tourist consumption domestically. 

 
𝐴𝑙𝑐𝑜ℎ𝑜𝑙 𝐿𝑃𝐶𝑑 = 𝑈𝑛𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐴𝑙𝑐𝑜ℎ𝑜𝑙 𝐿𝑃𝐶𝑑 + 𝐴𝑙𝑐𝑜ℎ𝑜𝑙 𝐿𝑃𝐶 𝐷𝑜𝑚𝑒𝑠𝑡𝑖𝑐 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑎𝑏𝑟𝑜𝑎𝑑 − 𝐴𝑙𝑐𝑜ℎ𝑜𝑙 𝐿𝑃𝐶 𝑇𝑜𝑢𝑟𝑖𝑠𝑡 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑑𝑜𝑚𝑒𝑠𝑡𝑖𝑐𝑎𝑙𝑙𝑦 

 

𝐴𝑙𝑐𝑜ℎ𝑜𝑙 𝐿𝑃𝐶 𝑖

=  
∑ 𝑇𝑜𝑢𝑟𝑖𝑠𝑡 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑙  ∗  𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑜𝑢𝑟𝑖𝑠𝑡𝑠 𝑖,𝑙  ∗  𝑈𝑛𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐴𝑙𝑐𝑜ℎ𝑜𝑙 𝐿𝑃𝐶 𝑙 ∗  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑡𝑎𝑦 𝑖,𝑙

365
 ∗  𝑙

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑

 

 

where:

𝑙 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠, 𝑖 𝑖𝑠 𝑒𝑖𝑡ℎ𝑒𝑟 Domestic consumption abroad 𝑜𝑟 Tourist consumption domestically, 
𝑎𝑛𝑑 𝑑 𝑖𝑠 𝑎 𝑑𝑜𝑚𝑒𝑠𝑡𝑖𝑐 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛. 

 

After adjusting alcohol LPC by tourist consumption and unrecorded consumption for all location/years reported, 

sex-specific and age-specific estimates were generated by incorporating estimates modelled in ST-GPR for 

percentage of current drinkers within a location/year/sex/age, as well as consumption trends modelled in the ST-

GPR grams per day model. First, the proportion of total consumption for a given location/year by age and sex 

was calculated, using the estimates of alcohol consumed per day, the population size, and the percentage of 

current drinkers. Then this proportion of total stock for a given location/year/sex/age was multiplied by the total 

stock for a given location/year to calculate the consumption in terms of litres per capita for a given 

location/year/sex/age. Then these estimates were converted to grams/per day. The following equations describe 

these calculations: 
  

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑙,𝑦,𝑠,𝑎

=  
𝐴𝑙𝑐𝑜ℎ𝑜𝑙  𝑔/𝑑𝑎𝑦  𝑙,𝑦,𝑠,𝑎 ∗  𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑙,𝑦,𝑠,𝑎 ∗  % 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑟𝑖𝑛𝑘𝑒𝑟𝑠 𝑙,𝑦,𝑠,𝑎

∑ 𝐴𝑙𝑐𝑜ℎ𝑜𝑙  𝑔/𝑑𝑎𝑦 𝑙,𝑦,𝑠,𝑎  ∗  𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑙,𝑦,𝑠,𝑎 ∗  % 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑟𝑖𝑛𝑘𝑒𝑟𝑠 𝑙,𝑦,𝑠,𝑎 𝑠,𝑎

 

 

 

𝐴𝑙𝑐𝑜ℎ𝑜𝑙 𝐿𝑃𝐶 𝑙,𝑦,𝑠,𝑎 =  
𝐴𝑙𝑐𝑜ℎ𝑜𝑙 𝐿𝑃𝐶 𝑙,𝑦  ∗  𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑙,𝑦  ∗  𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑙,𝑦,𝑠,𝑎

 % 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑟𝑖𝑛𝑘𝑒𝑟𝑠 𝑙,𝑦,𝑠,𝑎 ∗ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑙,𝑦,𝑠,𝑎

 

 

𝐴𝑙𝑐𝑜ℎ𝑜𝑙 𝑔/𝑑𝑎𝑦 𝑙,𝑦,𝑠,𝑎 = 𝐴𝑙𝑐𝑜ℎ𝑜𝑙 𝐿𝑃𝐶 𝑙,𝑦,𝑠,𝑎 ∗
1000

365
 

 

where: 

 𝑙 𝑖𝑠 𝑎 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑦 𝑖𝑠 𝑎 𝑦𝑒𝑎𝑟, 𝑠 𝑖𝑠 𝑎 𝑠𝑒𝑥, 𝑎𝑛𝑑 𝑎 𝑖𝑠 𝑎𝑛 𝑎𝑔𝑒 𝑔𝑟𝑜𝑢𝑝. 

 

Then gamma distribution was used to estimate individual-level variation within location, year, sex, age drinking 

populations.6,7 The parameters of the gamma distribution were chosen based on the mean and standard deviation 

of the 1,000 draws of alcohol g/day exposure for a given population. Standard deviation was calculated using 

the following formula.8 Several alternative models were tested using the data which showed that this model 

performed best.  

 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝑚𝑒𝑎𝑛 ∗ (0.087 ∗ 𝑓𝑒𝑚𝑎𝑙𝑒 +  1.171 ) 



90 

 

The studies identified through the systematic review was used to calculate a dose-response for stroke, modelled 

using DisMod ODE. DisMod ODE estimates specific doses when categories overlap across studies, through an 

integration step. The results of the meta-regression were used to estimate a non-parametric curve for all doses 

between zero and 150 g/day and their corresponding relative risks. The relative risk for stroke was estimated by 

sex. PAF was defined as: 

 

𝑃𝐴𝐹(𝑥) =  
𝑃𝐴+∫ 𝑃(𝑥)

150
0  ∗ 𝑅𝑅𝐶(𝑥) 𝑑𝑥 − 1

𝑃𝐴+∫ 𝑃(𝑥)
150

0  ∗ 𝑅𝑅𝐶(𝑥) 𝑑𝑥
  

 

𝑃(𝑥) = 𝑃𝐶 ∗ Γ(𝒑) 

 

where:  

     𝑃𝐶  𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑜𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑟𝑖𝑛𝑘𝑒𝑟𝑠, 𝑃𝑎  𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑜𝑓 𝑎𝑏𝑠𝑡𝑎𝑖𝑛𝑒𝑟𝑠, 𝑅𝑅𝑐(𝑥) 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒  
𝑟𝑖𝑠𝑘 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑟𝑖𝑛𝑘𝑒𝑟𝑠, 𝑎𝑛𝑑 𝒑 𝑎𝑟𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑎𝑛𝑑 𝑠𝑑 𝑜𝑓 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒   
 

The above equation for 1,000 draws of the exposure and relative risk models was performed. Then the 

estimated PAF draws were used to calculate DALYs, as per the other risk factors. 
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F11. Non‐optimal temperature 

 

The exposure of non-optimal temperature is defined as the same day exposure to ambient temperature that is 

either warmer or colder than the temperature associated with the minimum mortality risk. In the GBD analysis, 

exposure of non-optimal temperature is associated with the increased risk for stroke among the neurological 

disorders. The TMREL for temperature is defined as the temperature that is associated with the lowest overall 

mortality attributable to the risk, in a given location and year. Given varying exposure-response curves for 

different mean annual temperature zones, as well as spatially and temporally varying cause compositions, 

TMRELs were estimated by year and location. High temperature (heat) exposure is defined as exposure to 

temperatures warmer than this TMREL and low temperature (cold) is defined as temperatures colder than this 

TMREL. 

 

The steps in the estimation of non‐optimal temperature are shown in the following chart: 

 

Input data

Process

Results

Database

Risk Factors

Nonfatal

Burden estimation

Cause of death

Covariates

Input Data

ERA5 reanalysis data
Aggregation to daily 

values

 Causes-specific exposure-
responce curves

Minimum of death 
weighted aggregates of 

causes-specific minimum 
mortality temperature

VR mortality data 

Exposure data (ERA5)
(Meta-)regression of 
relative risks against 

temperature exposure

Relative risks by cause for 
each daily and mean 
annual temperature 
referenced to TMREL

Population 
attributable 

fractions by risk, 
cause, age, sex, and 

geography

Population 
attributable 

fractions by risk 
aggregate, cause, 

age, sex, and 
geography

Exposures by day, 
year, and pixel

Deaths, YLLs, YLDs, 
and DALYs 

attributable to each 
risk by age, sex, year, 

geography

Calculate PAFs using 
exposure, relative risk 

curves, and TMREL

Non-optimal temperature exposure

Exposure

Relative risks/Exposure-response curves

Deaths, YLLs, YLDs, 
DALYs for each 

disease and injury 
by age, sex, year, 

geography

RR for daily temperature 
categories on admin 1 

level

Locations- and 
year-specific 

TMREL

 
Data 

 

Exposure estimates were derived from the ERA5 reanalysis dataset from the European Centre for Medium‐

Range Weather Forecasts (ECMWF). ECMWF produced ERA5 estimates using their Integrated Forecast 

System (IFS). Hourly values of surface temperature are available for a spatial resolution of 0.25°x0.25°. 

Uncertainty estimates for these temperature values, ie, the ensemble spread (standard deviation) is available for 

every 3 hours (00:00, 03:00, 06:00, 09:00, 12:00, 15:00, 18:00, 21:00) for a spatial resolution of 0.5°x0.5°. For 

this analysis, data were available from 1979 to 2019.1,2 Daily averages of temperature were calculated and 

spread for each pixel and then assigned an uncertainty value to each daily temperature value. Based on the 

spread 1,000 draws of each daily temperature pixel were derived. 

 

Multi-temporal, globally consistent, high-resolution human population data at 1 km x 1 km resolution from 

WorldPop for the years 2000, 2005, 2010 and 2020 were used for calculating population-weighted location 

means. The data was interpolated in-between the 5-year estimation bins to obtain annual data. Further, the data 

was extrapolated until 1990 by using the 2000-2005 growth rate for back-casting. 

 

Deaths at the individual-level that included information regarding the cause (ie, ICD code), date, and the 

location at the second administrative level (admin2) or finer were collected from the GBD cause-of-death 

database for vital registration data sources. The GBD standard procedure for garbage code redistribution was 

adapted to redistribute daily mortality data rather than annual data and mapped ICD causes to GBD causes for 

level 3.  

 

Modelling strategy 

 

To estimate cause-specific mortality, based on average daily temperature and temperature zone (defined by 

mean annual temperature), a robust meta-regression framework, implemented through the MR-BRT (Bayesian, 

regularised, trimmed) tool was used. The tool allows 1) a meta-analytic framework that can handle 

heterogeneous data sources; 2) a robust approach to outlier detection and removal (trimming); 3) specification 
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of the functional dependence of outcome versus average daily temperature and temperature zone as a 2-

dimensional surface through a spline interface. 

 

For the purpose of modelling the relationship between mortality due to stroke and mean annual and daily 

temperature, a monotonicity in the direction of daily temperature was imposed. For all J-shaped curves that 

depicted an increase in mortality above and below a threshold, the curve was forced to monotonically decrease 

at the lower end of the temperature distribution and to monotonically increase at the upper end. For all external 

causes that displayed a monotonic increase over the entire temperature range, monotonicity was imposed only 

in the direction of warmer temperatures. When fitting the surface, 2 knots of degree 3 were placed in the 

direction of mean annual temperature. In the direction of daily mean temperature, 3 knots of degree 3 for J-

shaped causes and 2 knots of degree 1 for external causes were placed that monotonically increase over 

temperature range.  

 

The uncertainty was estimated using a two-step approach. First, the uncertainty of the mean surface was derived 

from the measurement error using the fit‐retrofit error. Second, uncertainty from the random effects was added 

by sampling it separately from the cold and warm side. 

 

The PAF was calculated for each temperature pixel and each day of the year (ie, pixel-day). Subsequently, 

population-weighted each pixel using the fraction of the population living in a given pixel relative to the GBD 

location. Depending on whether the daily mean temperature was below or above the TMREL, the effect was 

assigned to either low or high temperature. Daily population-weighted high and low temperature PAFs were 

then aggregated for the location and the year. Temperature effects can be either harmful or protective depending 

on whether the RR is above or below 1. For harmful temperature effects, ie, effects with a RR above 1, the 

following equation was used to derive PAFs: PAF=(RR-1)/RR; For temperature effects exhibiting a protective 

effect the equation was adapted by implementing the reverse RR: PAF=-((1/RR)-1)/(1/RR). The PAF associated 

with non-optimal temperature exposure is an aggregate of heat and cold effects in each location and year. The 

temperature attributable burden was estimated as the product of the total burden for stroke and the 

corresponding PAF for each location, year, age group, and sex. 
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F12.  Low physical activity 

 

Physical activity performed by adults greater than or equal to 25 years of age is measured, for durations of at 

least ten minutes at a time, across all domains of life (leisure/recreation, work/household and transport). 

Frequency, duration, and intensity of activity is used to calculate total metabolic equivalent minutes per week. 

MET (Metabolic Equivalent) is the ratio of the working metabolic rate to the resting metabolic rate. One MET 

is equivalent to 1 kcal/kg/hour and is equal to the energy cost of sitting quietly. A MET is also defined as the 

oxygen uptake in ml/kg/min with one MET equal to the oxygen cost of sitting quietly, around 3.5 ml/kl/min. 

 

In the GBD analysis, low physical activity is associated with the increased risk for stroke among the 

neurological disorders. The TMREL for physical inactivity was defined in the range 3,000-4,500 MET-min per 

week, which is calculated as the exposure at which minimal deaths due to stroke occurred.1 

 

The steps in the estimation of low physical activity are shown in the following chart: 

 

 
Data 

 

Surveys of the general adult population were included that captured self-reported physical activity in all 

domains of life (leisure/recreation, work/household and transport), where random sampling was used. Data were 

primarily derived from two standardised questionnaires: The Global Physical Activity Questionnaire2 (GPAQ) 

and the International Physical Activity Questionnaire3 (IPAQ), the other survey instruments that asked about 

intensity, frequency and duration of physical activities performed across all activity domains were also 

included. Due to a lack of a consistent relationship on the individual level between activity performed in each 

domain and total activity, the studies that included only recreational/leisure activities were not included. 

Physical activity level is categorised by total MET-minutes per week using four categories based on rounded 

values closest to the quartiles of the global distribution of total MET-minutes/week. The lower limit for the 

Level 1 category (600 MET-min/week) is the recommended minimum amount of physical activity to get any 

health benefit. Four categories with higher thresholds were included rather than the GPAQ and IPAQ 

recommended three categories to better capture any additional protective effects from higher activity levels. 

 

 Level 0: < 600 MET-min/week (inactive) 

 Level 1: 600-3999 MET-min/week (low-active) 
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Several surveys that focused specifically on leisure activity, were not included because they did not comprise all 

three domains (work, transport and leisure). In addition, surveys that did not report frequency, duration, and 

intensity of activity were also excluded. 

 

Modelling strategy 

 

A machine learning crosswalk was used to predict IPAQ estimates for GPAQ results and GPAQ estimates for 

IPAQ results, with original and estimated results then being combined to get one comprehensive IPAQ dataset 

and one comprehensive GPAQ dataset. The proportion of each country/year/age/sex subpopulation in each of 

the four activity levels was estimated using 12 separate Dismod models (one set of six for IPAQ and one for 
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GPAQ for IPAQ). Six categories of physical activity prevalence were used rather than four to accommodate the 

different MET minute/week cutoffs presented in tabulated data sources where individual unit record data was 

not available. Since the accepted threshold/definition for inactivity is consistently <600 MET-minutes/week, the 

vast majority of tabulated data was broken down into proportion inactive (model A) and proportion low, 

moderate or highly active (model B). 

 

Model Label MET-min/week Name of sequelae in online visualisation tool 

A Inactive  <600 Physical inactivity and low physical activity, inactive 

B Low/moderately/highly active ≥600 
Physical inactivity and low physical activity, 

low/moderately/highly active 

C Low active 600-3999 Physical inactivity and low physical activity, low active 

D Moderately/highly active >4000 
Physical inactivity and low physical activity, 
moderately/highly active 

E Moderately active 4000-7999 
Physical inactivity and low physical activity, moderately 

active 

F Highly active ≥8,000 Physical inactivity and low physical activity, highly active 

 

These models have mesh points at 0 15 25 35 45 55 65 75 85 100, and a study-level fixed effect on integrand 

variance (Z-cov) for whether a study was nationally representative or not, to account for the heterogeneity 

introduced boy studies that are not generalizable to the entire population. They also have national level fixed 

effects on prevalence of obesity. 

 

After DisMod, each of the 6 models specific to each data source were rescaled so that the proportions sum to 

one. For models A and B, the sum of the proportion in each category were rescaled to be equal to one. Next the 

sum of model C and D were rescaled to be equal to the rescaled value from model B. Then the sum of models E 

and F were rescaled to be equal to the rescaled value from model D. After these three rescales, the proportion 

for each of the four categories sums to 1. Scaled results for each data source are then hybridised to produce one 

set of results for the prevalence of the four categories of physical activity. 

 

Total MET-minutes per week were estimated indirectly. Two specific machine learning algorithms (Random 

Forest & XGBoost) were used that were trained using data that could characterise the relationship between total 

MET-mins/week and each of the categorical prevalence of physical activity. This resulted in country-year-age-

sex specific estimates of total physical activity in the form of MET-minutes per week. Utilising microdata on 

total MET-mins per week from individual-level surveys, the distribution of activity level was characterised at 

the population level. Then ensemble approach was used to distribution fitting, borrowing characteristics from 

individual distributions to tailor a unique distribution to fit the data using a weighting scheme. The standard 

deviation of each population’s activity was characterized through a linear regression that captured the 

relationship between standard deviation and mean activity levels in nationally representative IPAQ surveys: 

 

𝑛 (𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛) =  𝛽0  +  𝛽1  ×  𝑙𝑛 (𝑀𝑒𝑎𝑛𝑖) +  𝛽2  × 𝐴𝑔𝑒𝑖  +  𝛽3  × 𝑆𝑅𝑖  +  𝛽4  × 𝐹𝑒𝑚𝑖  
 

Where, Agei is the youngest age in population i’s age group, SRi is the super region in which the population 

lives, and Femi is a Boolean value depicting whether the population is female.  

 

The coefficients of this regression was then applied to the outputs of our estimate of total MET-minutes per 

week regression outputs to calculate the standard deviation by country, year, age, and sex. 

 

To estimate the effect size of the change in physical activity level on stroke, dose-response meta-analysis of 

prospective cohort studies was used.1 There is a well-documented attenuation of the risk for stroke due to 

metabolic risks factors throughout one’s life. To incorporate this age trend in the relative risks, the median age-

at-event across all cohorts were identified and considered as the reference age-group. Risk curves were then 

assigned to this reference age group. Finally, the percent change in relative risks between each age group and 

the reference age group was derived by averaging percentage changes in relative risks of all metabolic 

mediators. Estimates of exposure to low physical activity and relative risks for stroke was then used to calculate 

the population attributable fractions for stroke attributable to low physical activity. 
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F13. Low birthweight and short gestation  

 

In the GBD analysis, low birthweight and short gestation is associated with the increased risk for meningitis and 

encephalitis among the neurological disorders.  

 

Low birthweight for gestation and short gestation for birthweight are separate risk factors, however the 

exposures and relative risks for both were estimated jointly through the low birthweight and short gestation 

parent risk factor. The meaning of “low birthweight” and “short gestation” in GBD have subtle definitional 

differences compared to other usages of “low birthweight” and “short gestation” in the literature. The term “low 

birthweight” has historically been used to refer to birthweight less than 2,500 grams. However, because the goal 

of the GBD risk factors analysis was to quantify the entirety of attributable burden due to each risk factor, the 

GBD definition of “low birthweight” therefore refers to all birthweight below the TMREL for birthweight. 

Likewise, new-borns were typically classified into gestational age categories of “extremely preterm” (<28 

weeks of gestation), “very preterm” (28-<32 weeks of gestation), and “moderate to late preterm” (32-<37 weeks 

of gestation). “Short gestation” refers to gestational age below the gestational age TMREL. Exposures and 

relative risks for the GBD low birthweight and short gestation risk factors were categorised into different 

combinations of joint 500-gram birthweight and 2-week gestational age. The lowest risk overall 500-gram/2-

week bin was the overall TMREL. The univariate TMRELs vary with gestational age and birthweight. The 

lowest risk gestational age varies by birthweight category and the lowest risk birthweight vary with gestational 

age category. The latter were used to quantify univariate attributable risk. Under this framework, all attributable 

burden under the joint TMREL were referred to jointly as burden of low birthweight and short gestation. All 

attributable burden to birthweights under the TMREL for each gestational age category were, on aggregate, 

“low birthweight”, and all attributable burden to gestational ages under the TMREL for each birthweight 

category were, on aggregate, “short gestation.” Each combination of 500-grams and 2-weeks was associated 

with a relative risk for mortality by neonatal period (early and late neonatal) and by the causes, and relative to 

the joint TMREL. 

 

The steps in the estimation of low birthweight and short gestation are shown in the following flowchart: 
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Data 

Input data needed to model univariate gestational age and birthweight distributions at birth (Step A) are: 

 

 Prevalence of preterm birth (<37 weeks), by location, year and sex 

 Prevalence of preterm birth (<28 weeks), by location, year and sex  

 Mean gestational age, by location, year and sex 

 Gestational age microdata 

 Prevalence of low birthweight (<2,500 grams), by location, year and sex  

 Mean birthweight, by location, year and sex  

 Birthweight microdata 

 

To model the joint distribution and birthweight (Step B), joint microdata of gestational age and birthweight 

are also required. Additional inputs to modelling joint distributions from birth to 28 days (Step C) are all-

cause mortality by location, year and sex, and joint birthweight and gestational age microdata linked to 

mortality outcomes. Prevalence of extremely preterm birth (<28 weeks) and preterm birth (<37 weeks) were 

modelled using vital registration, survey, and clinical data. For the preterm models, only inpatient and 

insurance claims data were included from clinical informatics datasets; outpatient data were excluded 

because they were more likely to capture repeated visits by the same child rather than unique visits. 

Prevalence of low birthweight (<2,500 grams) was modelled using only vital registration and survey data. 

 

Several data processing steps were used prior to modelling. First, empirical age and sex ratios from previous 

GBD 2019 Decomposition 1 models was applied to disaggregate observations that did not entirely fit in one 

GBD age category or sex. Ratios were determined by dividing the result for a specific age and sex by the 

result for the aggregate age and sex specified in a given observation. It is our intention to update this 

splitting process annually. Second, to correct for the missingness in low birthweight data extracted from 

DHS surveys, birthweight was imputed using the Amelia II (Version 1.7.6) package in R. Birthweight was 

predicted using standard Amelia imputation methods from the following variables also in the DHS surveys: 

urbanicity, sex, birthweight recorded on card, birth order, maternal education, paternal education, child age, 

child weight, child height, mother’s age at birth, mother’s weight, shared toilet facility, and household water 

treated. Third, crosswalking was used to process data in the extremely preterm (<28 weeks) and preterm 

(<37 weeks) models. All preterm crosswalks were done using meta-regression-regularized, Bayesian, 

trimmed (MR-BRT). Insurance claims data in extremely preterm (<28 weeks) data were adjusted to vital 

registration data. Insurance claims data and inpatient data were also adjusted to vital registration in preterm 

(<37 weeks) conditions. The crosswalk for inpatient data had a spline on the prevalence of inpatient data. 

Once all claims and inpatient preterm (<37 weeks) data were adjusted, low birthweight data were 

crosswalked to post-claims and inpatient preterm (<37 weeks) data. If low birthweight data in countries that 

were 1) categorised as “data-rich” locations in cause-of-death modelling or had at least ten consecutive years 

of vital registration data recording gestational age and 2) had both preterm birth and low birthweight data, 

crosswalked low birthweight data were outliered so that the model was informed only by the gestational age 

data.  

 

Modelling strategy 

 

Step A: Estimating univariate birthweight and gestational age distributions at birth 

 

Ensemble distribution models was constructed using mean of the distribution, variance of the distribution, and 

the weights of the distributions being ensemble. To model mean and variance for all location, year and sex for 

birthweight and gestational age, ST-GPR models was used to model prevalence of low birthweight, extremely 

preterm, and preterm birth for all location, year and sex at birth. To model mean birthweight for all location, 

year and sex, OLS linear regression was used to regress mean birthweight on log-transformed low birthweight 

prevalence. This model was then used to predict mean birthweight for all location year and sex, using the 

prevalence of low birthweight (<2500 grams) modelled for all location, year and sex in ST-GPR. Similarly, to 

model gestational age mean for all location, year and sex, OLS linear regression model was used to regress 

mean gestational age on log-transformed preterm prevalence. Mean gestational age for all location year and sex 

was predicted using the preterm birth (<37 weeks) estimated modelled in ST-GPR.  

 

Global ensemble weights for gestational age were derived by using a 3 million sample of all available 

gestational age and birthweight microdata in Table 8 to select the ensemble weights. The two distribution 

families that received the highest weights were the Weibull (43%) and log-logistic (21%) distributions. Global 

ensemble weights for birthweight were derived using a 3 million sample of all available microdata, in addition 

to birthweight microdata available primarily through the DHS and MICS surveys. The four distribution families 
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that received the highest weights were the mirror gamma (31%), log-logistic (19%), normal (10%), and mirror 

gumbel (10%) distributions. 

 

For each location, year and sex, given the mean and ensemble weights, the variance was optimised to 

minimise error on the prevalence of preterm birth (<37 weeks) for the gestational age distribution and 

prevalence of low birthweight (<2500 grams) for the birthweight distribution.    

 

Step B: Estimating joint birthweight and gestational age distributions at births 

 

In order to model the joint distribution of gestational age and birthweight from separate distributions, 

information was needed about the correlation between the two distributions. Distributions of gestational age 

and birthweight are not independent; the Spearman correlation for each country where joint microdata were 

available, pooling across all years of data available, ranged from 0.25 to 0.49. The overall Spearman 

correlation was 0.38, pooling across all countries in the dataset. 

 

The joint distribution of birthweight and gestational age per location-year-sex was modelled using the global 

copula family and parameters selected and the location-year-sex gestational age and birthweight 

distributions. The joint distribution was simulated 100 times to capture uncertainty. Each simulation 

consisted of 10,000 simulated joint birthweight and gestational age data points. Each joint distribution was 

divided into 500g by 2-week bins to match the categorical bins of the relative risk surface. Birth prevalence 

was then calculated for each 500g by 2-week bin. 

 

Step C: Estimating joint distributions from birth to the end of the neonatal period 

 

Early neonatal and late neonatal prevalence was estimated using life table approaches for each 500-gram and 

2-week bin. Using the all-cause early neonatal mortality rate for each location-year-sex, births per location-

year-sex-bin, and the relative risks for each location-year-sex bin in the early neonatal period, the all-cause 

early neonatal mortality rate was calculated for each location-year-sex bin. The early neonatal mortality rate 

per bin was used to calculate the number of survivors at 7 days and prevalence in the early neonatal period. 

Using the same process, the all-cause late neonatal mortality rate for each location-year-sex was paired with 

the number of survivors at 7 days and late neonatal relative risks per bin to calculate late neonatal prevalence 

and survivors at 28 days.  

 

Relative risks and population attributable fraction 

  

The available data for deriving relative risk was only for all-cause mortality. The relative risk of all-cause 

mortality across all available sources and meningitis and encephalitis was analysed based on criteria of 

biologic plausibility. For each location, data were pooled across years, and the risk of all-cause mortality at 

the early neonatal period and late neonatal period at joint birthweight and gestational age combinations was 

calculated. To calculate relative risk at each 500-gram and 2-week combination, logistic regression was first 

used to calculate mortality odds for each joint 2-week gestational age and 500-gram birthweight category. 

Mortality odds were smoothed with Gaussian Process Regression, with the independent distributions of 

mortality odds by birthweight and mortality odds by gestational age serving as priors in the regression. 

 

A pooled country analysis of mortality risk in the early neonatal period and late neonatal period by short 

gestational age category in developing countries were also converted into 500-gram and 2-week bin 

mortality odds surfaces. Location-specific relative risk surfaces, derived from location-specific estimates of 

with-condition mortality of preterm birth, were converted into 500-gram and 2-week bin mortality odds. The 

meta-analysed mortality odds surface for each location was smoothed using Gaussian Process Regression 

and then converted into mortality risk. To calculate mortality relative risks, the risk of each joint 2-week 

gestational age and 500-gram birthweight category were divided by the risk of mortality in the joint 

gestational age and birthweight category with the lowest mortality risk. 

 

For each of the country-derived relative risk surfaces, the 500-gram and 2-week gestational age joint bin with 

the lowest risk was identified. This bin differed within each country dataset. To identify the universal 500-gram 

and 2-week gestational age category that would serve as the universal TMREL for our analysis, the bins were 

chosen that were identified to be the TMREL in each country dataset to contribute to the universal TMREL. 

Therefore, the joint categories that served as our universal TMREL for the low birthweight and short gestation 

risk factor were "38-40 weeks of gestation and 3,500-4,000 grams", "38-40 weeks of gestation and 4,000-4,500 

grams", and "40-42 weeks of gestation and 4,000-4,500 grams". As the joint TMREL, all three categories were 

assigned to a relative risk equal to 1.   
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The total PAF for the low birthweight and short gestation joint risk factor was calculated by summing the PAF 

calculated from each 500-gram and 2-week category, with the lowest risk category among all the 500-gram and 

2-week categories serving as the TMREL. The equation for calculating PAF for each 500-gram and 2-week 

category is:   

𝑃𝐴𝐹𝑗𝑜𝑎𝑠𝑔𝑡 =  
∑ 𝑅𝑅𝑗𝑜𝑎𝑠𝑡

𝑢
𝑥=1 (𝑥)𝑃𝑗𝑎𝑠𝑔𝑡(𝑥) − 𝑅𝑅𝑗𝑜𝑎𝑠𝑔(𝑇𝑀𝑅𝐸𝑗𝑎𝑠) 

∑ 𝑅𝑅𝑗𝑜𝑎𝑠
𝑢
𝑥=1 (𝑥)𝑃𝑗𝑎𝑠𝑔𝑡(𝑥)

 

 

To calculate the PAFs for the univariate risks (‘short gestation for birthweight’ and ‘low birthweight for 

gestation’), relative risks are first weighted by global exposure in 2019, summed across one of the dimensions 

(gestational age or birthweight), and then rescaled by the maximum RR in the TMREL block (38-42 weeks of 

gestation and 3500-4500 grams). Any RR less than 1 was set to 1. Exposure was also summed across the same 

dimension, and the univariate PAF equalled the sum of the product of the weighted RRs and exposures. 
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G. Uncertainty intervals 

 

Point estimates for each metric of interest were derived from the mean of the draws, while 95% uncertainty 

intervals (UIs) were derived from the 2.5th and 97.5th percentiles of the 1,000 draw level values. Uncertainty in 

the estimation is attributable to sample size variability within data sources, different availability of data by age, 

sex, year, or location, and cause-specific model specifications. The UIs were determined for components of 

cause-specific estimation based on 1,000 draws from the posterior distribution of cause specific mortality by 

age, sex, and location for each year included in the GBD 2019 analysis. Similarly, for non-fatal estimates if 

there was a change in disease estimates between locations or over time that was in the same direction in more 

than 950 of the 1,000 sample, it is reported as significant. With this approach, uncertainty could be quantified 

and propagated into the final quantities of interest. 
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3. Socio-demographic Index of the states of India, 2019  

 
States of India SDI in 2019 

Bihar 0.45 

Madhya Pradesh 0.50 

Jharkhand 0.50 

Rajasthan 0.51 

Uttar Pradesh 0.51 

Chhattisgarh 0.52 

Odisha 0.54 

Andhra Pradesh 0.54 

Assam 0.54 

West Bengal 0.55 

Tripura 0.55 

Arunachal Pradesh 0.55 

Meghalaya 0.55 

Telangana 0.56 

Karnataka 0.57 

Manipur 0.59 

Jammu & Kashmir and Ladakh 0.60 

Haryana 0.60 

Gujarat 0.60 

Mizoram 0.61 

Tamil Nadu 0.61 

Nagaland 0.62 

Sikkim 0.62 

Uttarakhand 0.62 

Punjab 0.62 

Maharashtra 0.62 

Himachal Pradesh 0.63 

Kerala 0.66 

Other small union territories  0.67 

Delhi 0.71 

Goa 0.72 

 SDI as computed by GBD in 2019 as described elsewhere (Lancet 2020; 396: 1135-39). 

 SDI= Socio-demographic Index.
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4. Correlation between SDI of the states of India and the DALY rates of non-communicable, 

communicable, and injury-related neurological disorders, 2019  

 

 Neurological disorders 

Correlation between SDI of states of India and 

Crude DALY rate Age-standardised DALY rate 

r* r-square p-value r* r-square p-value 

Non-communicable neurological disorders -0.04 0.002 0.826 -0.32 0.10 0.078 

Communicable neurological disorders -0.56 0.31 0.001 -0.52 0.28 0.002 

Injury-related neurological disorders 0.61 0.37 <0.0001 0.42 0.18 0.019 

 

SDI= Socio-demographic Index. 

 r = Pearson correlation coefficient. 

*Following categories were used for the strength of correlation: 0.00-0.19 as very weak, 0.20-0.39 as weak, 0.40-0.59 as moderate, 0.60-0.79 as strong, and 

0.80-1 as very strong (Swinscow TDV, Campbell MJ, editors. Statistics at Square One. London: BMJ Publishing Group. 1997). 
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5. Crude DALY rates of non-communicable, communicable, and injury-related neurological disorders in 

the states of India, 2019 

 

States of India* 

DALYs per 100,000 (95% uncertainty interval) 

Non-communicable 

neurological 

disorders 

Communicable 

neurological 

disorders 

Injury-related 

neurological 

disorders 

India 2,754 (2,143-3,615) 369 (305-493) 198 (146-260) 

Bihar 2,265 (1,686-3,094) 364 (271-534) 156 (113-204) 

Madhya Pradesh 2,656 (2,043-3,511) 446 (346-615) 181 (133-237) 

Jharkhand 2,234 (1,628-3,058) 304 (223-451) 179 (131-236) 

Rajasthan 2,264 (1,625-3,132) 374 (282-545) 182 (132-240) 

Uttar Pradesh 2,220 (1,629-3,100) 615 (496-775) 168 (122-219) 

Chhattisgarh 3,925 (3,154-4,855) 281 (207-421) 186 (137-244) 

Odisha 3,661 (2,914-4,652) 374 (284-485) 198 (146-259) 

Andhra Pradesh 2,968 (2,255-3,974) 330 (270-402) 218 (162-285) 

Assam 3,562 (2,884-4,507) 276 (193-504) 153 (112-199) 

West Bengal 3,792 (2,983-4,762) 249 (191-396) 204 (149-268) 

Tripura 3,765 (2,902-4,763) 153 (102-324) 198 (145-262) 

Arunachal Pradesh 2,132 (1,544-3,012) 290 (220-434) 156 (115-206) 

Meghalaya 2,242 (1,613-3,090) 309 (223-458) 141 (103-184) 

Telangana 2,659 (1,974-3,561) 271 (211-379) 243 (178-319) 

Karnataka 3,182 (2,453-4,098) 316 (253-438) 208 (152-274) 

Manipur 2,963 (2,240-3,882) 204 (145-353) 207 (151-275) 

Jammu & Kashmir and Ladakh 2,355 (1,751-3,207) 185 (133-339) 263 (182-375) 

Haryana 2,358 (1,708-3,250) 313 (243-454) 221 (163-291) 

Gujarat 2,560 (1,898-3,448) 395 (323-507) 207 (152-273) 

Mizoram 1,878 (1,247-2,854) 343 (262-457) 171 (124-225) 

Tamil Nadu 2,729 (2,069-3,666) 350 (292-413) 283 (208-372) 

Nagaland 2,710 (2,024-3,628) 299 (219-462) 161 (117-209) 

Sikkim 2,212 (1,517-3,166) 185 (139-263) 210 (153-278) 

Uttarakhand 2,678 (1,984-3,639) 408 (329-521) 225 (165-296) 

Punjab 2,765 (2,094-3,658) 229 (175-363) 249 (183-327) 

Maharashtra 3,010 (2,331-3,942) 249 (190-393) 202 (149-265) 

Himachal Pradesh 2,659 (1,970-3,641) 189 (145-285) 238 (176-312) 

Kerala 3,381 (2,665-4,362) 184 (137-315) 271 (199-356) 

Other small union territories 2,490 (1,797-3,420) 170 (123-307) 245 (179-323) 

Delhi 2,167 (1,538-3,018) 226 (168-365) 203 (149-269) 

Goa 3,220 (2,405-4,231) 135 (90-270) 265 (194-352) 

*The states are listed in increasing order of Socio-demographic Index in 2019.  
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6. Number of deaths due to neurological disorders in India, 2019 

 

Neurological disorders 

Number of deaths 

(95% uncertainty interval) 

Percentage of total neurological disorders deaths 

(95% uncertainty interval) 

Both sexes Males Females Both sexes Males Females 

Non-communicable disorders       

Stroke 699,100 (593,800-806,600) 363,200 (294,000-443,400) 335,800 (264,600-412,800) 68.0 (54.6-75.3) 69.5 (58.1-76.0) 66.4 (52.1-5.1) 

Epilepsy 32,700 (26,800-39,200) 17,100 (14,000-21,200) 15,600 (11,100-19,900) 3.2 (2.5-3.8) 3.3 (2.6-3.9) 3.1 (2.1-4.0) 

Alzheimer's disease and other dementias 129,000 (31,200-360,000) 55,800 (12,600-163,400) 73,200 (17,800-199,700) 12.0 (3.2-29.1) 10.3 (2.7-25.7) 13.8 (3.7-32.4) 

Brain and CNS cancer 23,700 (18,600-28,900) 13,300 (8,900-17,300) 10,400 (8,000-13,000) 2.3 (1.7-2.8) 2.5 (1.7-3.3) 2.1 (1.5-2.5) 

Parkinson's disease 45,300 (38,600-52,800) 25,600 (20,500-30,900) 19,800 (15,600-24,600) 4.4 (3.5-5.1) 4.9 (3.8-5.7) 3.9 (3.0-4.7) 

Multiple sclerosis 2,310 (1,860-2,930) 1,020 (750-1,340) 1,290 (950-1,890) 0.2 (0.2-0.3) 0.2 (0.1-0.3) 0.3 (0.2-0.4) 

Motor neuron diseases 1,600 (1,220-1990) 900 (640-1,200) 700 (530-950) 0.2 (0.1-0.2) 0.2 (0.1-0.2) 0.1 (0.1-0.2) 

Other neurological disorders 5,840 (4,210-8,280) 2,580 (1,580-4,390) 3,260 (2,440-4,220) 0.6 (0.4-0.8) 0.5 (0.3-0.8) 0.6 (0.5-0.8) 

Communicable disorders       

Encephalitis 51,900 (40,400-85,000) 24,300 (18,200-46,100) 27,600 (20,500-45,300) 5.0 (3.7-8.1) 4.6 (3.4-8.3) 5.5 (3.8-8.8) 

Meningitis 34,700 (29,700-40,000) 16,700 (13,800-20,700) 18,000 (14,900-21,300) 3.4 (2.7-4.0) 3.2 (2.5-4.0) 3.6 (2.7-4.4) 

Tetanus 7,330 (4,920-11,020) 3,920 (2,160-6,360) 3,410 (2,240-5,220) 0.7 (0.4-1.1) 0.8 (0.4-1.3) 0.7 (0.4-1.1) 

 

  



123 

 

7. Prevalence or incidence rate of neurological disorders in the states of India, 2019 

 

 

 States of India* 

Prevalence per 100,000 (95% uncertainty interval) 

Headache disorders Epilepsy Cerebral palsy 

Alzheimer's disease 

and other dementias 

Brain and CNS 

cancer Parkinson's disease Multiple sclerosis 

Motor neuron 

diseases 

 India 35,060 (32,254-37,903) 726 (604-853)  1,210 (1,054-1,396)  266 (225-306) 3.5 (2.7-4.4) 55 (46-66) 7.7 (6.0-9.4) 1.8 (1.4-2.3) 

Bihar 33,287 (30,477-36,091) 617 (445-817) 1,239 (1,051-1,455) 203 (172-234) 3.2 (2.4-4.3) 42 (35-50) 6.9 (5.4-8.5) 1.7 (1.3-2.1) 

Madhya Pradesh 34,444 (31,583-37,322) 660 (490-845) 1,092 (934-1,291) 227 (194-264) 3.4 (2.6-4.4) 47 (39-56) 7.3 (5.7-9.0) 1.7 (1.3-2.1) 

Jharkhand 34,595 (31,791-37,501) 767 (567-978) 1,270 (1,106-1,486) 244 (207-283) 2.6 (1.9-3.6) 50 (41-59) 7.3 (5.7-9.0) 1.7 (1.4-2.2) 

Rajasthan 34,748 (31,951-37,665) 643 (475-826) 1,144 (979-1,340) 231 (196-267) 3.5 (2.7-4.5) 46 (38-55) 7.9 (6.2-9.8) 1.9 (1.5-2.4) 

Uttar Pradesh 33,970 (31,160-36,831) 669 (491-866) 1,127 (968-1,315) 195 (166-225) 3.3 (2.6-4.5) 43 (35-51) 7.7 (6.0-9.4) 1.7 (1.3-2.1) 

Chhattisgarh 34,765 (31,954-37,633) 810 (587-1,038) 1,111 (949-1,300) 227 (193-264) 2.9 (2.2-3.8) 51 (42-60) 7.2 (5.5-8.9) 1.7 (1.3-2.1) 

Odisha 35,441 (32,638-38,238) 814 (568-1,046) 1,083 (926-1,271) 292 (249-338) 3.4 (2.6-4.6) 62 (51-74) 7.6 (5.9-9.4) 1.6 (1.3-2.1) 

Andhra Pradesh 36,400 (33,591-39,291) 822 (604-1,051) 1,126 (983-1,300) 368 (312-428) 3.3 (2.4-4.4) 72 (59-86) 6.7 (5.3-8.3) 1.7 (1.4-2.2) 

Assam 34,652 (31,782-37,518) 680 (489-885) 1,147 (980-1,331) 192 (163-222) 2.9 (2.1-4.5) 42 (34-50) 8.4 (6.6-10.3) 1.7 (1.4-2.2) 

West Bengal 36,392 (33,495-39,300) 467 (343-613) 1,234 (1,070-1,424) 251 (214-291) 3.4 (2.4-4.4) 57 (47-69) 8.7 (6.8-10.6) 1.9 (1.5-2.4) 

Tripura 36,481 (33,553-39,397) 696 (511-898) 1,298 (1,120-1,499) 265 (225-307) 2.3 (1.7-3.6) 52 (42-62) 8.5 (6.6-10.3) 1.9 (1.5-2.4) 

Arunachal Pradesh 34,096 (31,241-37,037) 729 (537-952) 1,459 (1,254-1,708) 149 (127-171) 2.9 (2.1-4.5) 31 (26-37) 7.8 (6.1-9.8) 2.0 (1.5-2.5) 

Meghalaya 34,093 (31,227-37,054) 751 (552-964) 1,340 (1,147-1,578) 164 (140-189) 2.5 (1.8-4.0) 32 (26-38) 7.3 (5.6-9.2) 1.9 (1.5-2.4) 

Telangana 36,262 (33,407-39,127) 874 (667-1,090) 1,187 (1,027-1,385) 272 (233-317) 3.5 (2.5-4.7) 58 (47-70) 6.9 (5.4-8.7) 1.8 (1.4-2.3) 

Karnataka 33,820 (30,967-36,640) 905 (657-1,189) 1,222 (1,062-1,419) 318 (270-368) 3.9 (2.8-4.8) 64 (52-77) 6.2 (4.8-7.7) 1.7 (1.4-2.2) 

Manipur 35,364 (32,478-38,231) 647 (473-819) 1,358 (1,176-1,578) 217 (184-250) 2.7 (1.9-3.9) 43 (35-51) 8.4 (6.6-10.3) 1.9 (1.5-2.4) 

Jammu & Kashmir and Ladakh 35,587 (32,705-38,525) 597 (439-774) 1,343 (1,161-1,565) 247 (211-286) 3.6 (2.7-4.7) 46 (37-57) 10.6 (8.4-13.1) 2.2 (1.8-2.8) 

Haryana 35,458 (32,644-38,295) 825 (611-1,028) 1,237 (1,068-1,445) 286 (244-328) 3.4 (2.6-4.3) 56 (47-67) 9.6 (7.5-11.8) 2.1 (1.7-2.7) 

Gujarat 35,308 (32,472-38,127) 855 (640-1,074) 1,180 (1,025-1,369) 252 (214-292) 3.4 (2.7-4.6) 56 (46-68) 8.0 (6.3-9.8) 1.9 (1.5-2.4) 

Mizoram 34,559 (31,696-37,405) 714 (534-904) 1,325 (1,144-1,543) 213 (183-245) 3.3 (2.3-4.4) 39 (32-46) 7.7 (6.0-9.5) 1.9 (1.5-2.4) 

Tamil Nadu 36,607 (33,809-39,467) 769 (579-968) 1,214 (1,052-1,402) 366 (312-421) 3.9 (2.9-5.0) 73 (60-88) 6.3 (4.9-7.8) 1.7 (1.3-2.1) 

Nagaland 34,401 (31,546-37,344) 756 (554-951) 1,475 (1,269-1,736) 198 (168-229) 3.1 (2.2-4.5) 41 (34-48) 7.7 (6.1-9.5) 2.0 (1.5-2.5) 

Sikkim 37,137 (34,133-40,142) 800 (591-1,027) 1,306 (1,134-1,516) 247 (210-285) 2.7 (1.9-4.8) 51 (42-61) 9.5 (7.5-11.7) 2.3 (1.8-2.9) 

Uttarakhand 35,659 (32,828-38,531) 911 (682-1,171) 1,363 (1,182-1,583) 256 (217-296) 3.6 (2.8-5.0) 57 (46-68) 10.5 (8.3-12.9) 2.0 (1.6-2.5) 

Punjab 36,226 (33,408-39,107) 865 (650-1,104) 1,278 (1,115-1,491) 356 (304-409) 4.0 (3.1-5.3) 74 (61-88) 11.4 (9.0-14) 2.2 (1.7-2.7) 

Maharashtra 36,130 (33,266-38,927) 784 (585-995) 1,380 (1,195-1,609) 323 (274-373) 4.2 (2.9-5.2) 69 (57-82) 7.5 (5.8-9.3) 1.9 (1.5-2.4) 

Himachal Pradesh 36,373 (33,538-39,200) 828 (599-1,054) 1,508 (1,276-1,764) 359 (305-415) 4.0 (2.8-5.1) 68 (56-81) 11.9 (9.5-14.5) 2.2 (1.8-2.8) 

Kerala 36,279 (33,537-39,014) 865 (641-1,087) 1,500 (1,309-1,731) 564 (482-646) 5.3 (3.0-6.7) 96 (79-115) 6.6 (5.1-8.2) 1.9 (1.5-2.4) 

Other small union territories 37,315 (34,342-40,276) 820 (600-1,032) 1,367 (1,176-1,584) 255 (217-294) 3.5 (2.3-4.6) 56 (47-67) 6.9 (5.3-8.6) 2.0 (1.6-2.5) 

Delhi 35,851 (32,938-38,713) 818 (567-1,078) 1,275 (1,101-1,483) 201 (168-235) 4.8 (2.6-6.5) 51 (43-61) 10.1 (7.9-12.5) 2.2 (1.8-2.8) 

Goa 36,911 (34,120-39,758) 958 (696-1,210) 1,336 (1,166-1,550) 414 (352-475) 4.4 (2.6-5.8) 86 (71-102) 7.8 (6.1-9.5) 2.1 (1.7-2.6) 

 

 States of India* 

Incidence per 100,000 (95% uncertainty interval) 

Stroke Encephalitis Meningitis Tetanus 
Traumatic brain 

injuries 
Spinal cord injuries 

 India 93 (83-104) 44 (40-48) 40 (33-47) 1.19 (0.78-1.88) 537 (459-623) 9.7 (7.5-12.5) 

Bihar 71 (63-80) 44 (39-49) 43 (34-55) 1.39 (0.87-2.27) 450 (386-520) 8.0 (6.2-10.1) 

Madhya Pradesh 87 (78-98) 42 (37-46) 48 (39-57) 0.62 (0.33-1.37) 513 (439-593) 9.0 (6.9-11.6) 

Jharkhand 78 (69-87) 44 (39-48) 38 (30-45) 1.17 (0.73-1.89) 479 (410-554) 8.5 (6.6-11.0) 

Rajasthan 74 (66-83) 40 (36-45) 42 (34-50) 0.99 (0.58-1.70) 522 (439-616) 8.9 (6.7-11.8) 

Uttar Pradesh 64 (57-72) 43 (39-48) 51 (42-61) 3.93 (2.04-6.81) 503 (429-592) 8.8 (6.7-11.4) 

Chhattisgarh 124 (112-140) 42 (37-46) 38 (30-46) 0.98 (0.59-1.68) 526 (451-607) 9.6 (7.4-12.2) 

Odisha 123 (110-140) 50 (45-54) 35 (29-42) 0.72 (0.43-1.19) 516 (443-597) 9.5 (7.3-12.1) 

Andhra Pradesh 109 (97-122) 52 (47-56) 34 (28-40) 0.27 (0.15-0.61) 566 (483-658) 10.7 (8.2-13.8) 

Assam 110 (98-124) 39 (35-44) 36 (29-44) 0.83 (0.49-1.62) 411 (348-479) 7.2 (5.5-9.3) 

West Bengal 145 (129-163) 41 (37-45) 34 (27-40) 0.53 (0.33-0.85) 507 (433-588) 9.3 (7.2-12.0) 

Tripura 134 (120-150) 38 (34-42) 33 (27-40) 0.23 (0.11-0.73) 477 (407-552) 8.5 (6.6-11.1) 

Arunachal Pradesh 65 (58-73) 40 (36-45) 40 (32-49) 0.15 (0.04-0.83) 461 (394-538) 8.1 (6.2-10.3) 

Meghalaya 69 (62-78) 39 (35-44) 44 (36-54) 0.34 (0.17-0.84) 415 (354-484) 7.1 (5.5-9.1) 

Telangana 88 (78-98) 42 (38-46) 34 (28-41) 0.22 (0.12-0.53) 643 (547-748) 11.4 (8.6-14.9) 

Karnataka 109 (97-123) 51 (46-55) 36 (30-42) 0.14 (0.05-0.68) 557 (475-650) 10.5 (8.1-13.4) 

Manipur 104 (92-116) 41 (36-45) 35 (28-42) 0.67 (0.38-1.20) 506 (431-591) 8.5 (6.4-11.5) 

Jammu & Kashmir and Ladakh 77 (68-86) 35 (31-39) 35 (29-42) 0.16 (0.08-0.50) 592 (504-693) 11.1 (8.2-14.9) 

Haryana 79 (71-89) 41 (37-45) 38 (31-44) 0.57 (0.32-0.96) 601 (513-698) 10.5 (8.0-13.7) 

Gujarat 83 (74-95) 45 (40-49) 42 (34-50) 0.43 (0.27-0.84) 559 (478-647) 10.1 (7.7-13.0) 

Mizoram 54 (48-61) 45 (40-50) 45 (37-54) 0.17 (0.06-0.67) 478 (408-554) 8.2 (6.3-10.7) 

Tamil Nadu 100 (89-113) 53 (48-58) 26 (21-32) 0.08 (0.02-0.44) 740 (633-858) 14.0 (10.7-18.1) 

Nagaland 89 (80-99) 40 (35-44) 42 (34-51) 1.42 (0.63-2.64) 454 (388-528) 7.8 (6.0-10.1) 

Sikkim 79 (71-89) 35 (31-38) 32 (26-38) 0.07 (0.03-0.36) 554 (473-645) 9.8 (7.5-12.6) 

Uttarakhand 84 (75-95) 41 (37-45) 44 (36-52) 2.57 (0.86-4.46) 636 (542-734) 11.2 (8.5-14.6) 

Punjab 101 (90-113) 43 (38-47) 33 (27-39) 0.38 (0.24-0.68) 627 (535-729) 11.0 (8.2-14.5) 

Maharashtra 103 (92-117) 41 (37-46) 36 (29-43) 0.39 (0.24-0.66) 524 (445-614) 9.8 (7.5-12.6) 

Himachal Pradesh 95 (85-107) 39 (35-43) 28 (22-33) 0.49 (0.21-1.13) 597 (512-692) 10.8 (8.3-13.9) 

Kerala 152 (135-172) 49 (45-54) 34 (28-40) 0.23 (0.11-0.43) 636 (545-738) 12.6 (9.6-16.2) 

Other small union territories 84 (75-95) 38 (34-42) 31 (25-37) 0.08 (0.04-0.35) 627 (535-729) 11.5 (8.8-14.8) 

Delhi 71 (63-79) 37 (33-42) 38 (31-45) 0.40 (0.17-0.71) 528 (450-613) 9.1 (6.9-12.0) 

Goa 121 (108-137) 43 (39-48) 31 (25-38) 0.37 (0.09-0.93) 636 (544-740) 12.3 (9.4-15.9) 

*The states are listed in increasing order of Socio-demographic Index in 2019       
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8. Correlation between SDI of the states of India and the prevalence or incidence and DALY rates of neurological disorders, 2019 

 

Neurological disorders 
Correlation between SDI of states of India and 

Crude prevalence Age-standardised prevalence Crude DALY rate Age-standardised DALY rate 

Non-communicable disorders r* r-square p-value r* r-square p-value r* r-square p-value r* r-square p-value 

Headache disorders 0.63 0.39 <0.0001 0.023 0.0005 0.902 0.68 0.46 <0.0001 0.060 0.004 0.747 

Epilepsy 0.55 0.30 0.002 0.54 0.29 0.002 0.12 0.02 0.553 0.42 0.17 0.024 

Cerebral palsy 0.56 0.31 0.001 0.66 0.43 <0.0001 0.56 0.32 0.001 0.70 0.49 <0.0001 

Alzheimer's disease and other dementias 0.44 0.19 0.013 0.09 0.01 0.615 0.42 0.18 0.019 -0.16 0.02 0.398 

Brain and CNS cancer 0.61 0.37 <0.0001 0.64 0.41 <0.0001 0.23 0.05 0.207 0.12 0.01 0.521 

Parkinson's disease 0.49 0.24 0.005 0.41 0.16 0.024 0.46 0.21 0.009 -0.04 0.002 0.825 

Multiple sclerosis 0.32 0.10 0.081 -0.02 0.0005 0.908 0.24 0.06 0.201 -0.21 0.04 0.268 

Motor neuron diseases 0.67 0.45 <0.0001 0.62 0.38 <0.0001 0.75 0.57 <0.0001 0.49 0.24 0.005 

  Crude incidence rate Age-standardised incidence rate Crude DALY rate Age-standardised DALY rate 

Non-communicable disorders r* r-square p-value r* r-square p-value r* r-square p-value r* r-square p-value 

Stroke  0.11 0.01 0.558 -0.27 0.07 0.141 -0.17 0.03 0.370 -0.36 0.13 0.048 

Communicable disorders                         

Encephalitis  -0.12 0.01 0.529 -0.27 0.07 0.144 -0.55 0.30 0.002 -0.52 0.27 0.003 

Meningitis   -0.45 0.20 0.011 -0.21 0.04 0.260 -0.42 0.18 0.018 -0.38 0.14 0.036 

Tetanus   -0.33 0.11 0.067 -0.31 0.10 0.086 -0.36 0.13 0.046 -0.33 0.11 0.067 

Injuries                          

Traumatic brain injuries  0.54 0.29 0.002 0.40 0.16 0.027 0.62 0.39 <0.0001 0.49 0.24 0.005 

Spinal cord injuries  0.53 0.28 0.002 0.39 0.15 0.032 0.48 0.23 0.006 0.24 0.06 0.201 

 

SDI= Socio-demographic Index. 

 r = Pearson correlation coefficient. 

*Following categories were used for the strength of correlation: 0.00-0.19 as very weak, 0.20-0.39 as weak, 0.40-0.59 as moderate, 0.60-0.79 as strong, and 0.80-1 as very strong (Swinscow TDV, Campbell MJ, editors. 

Statistics at Square One. London: BMJ Publishing Group. 1997).  
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9. Age-specific prevalence of select neurological disorders by sex in India, 2019 

 

Age group 

(years) 

Prevalence per 100,000 (95% uncertainty interval) 

Migraine Tension-type headache Epilepsy Cerebral palsy 

Males Females Males Females Males Females Males Females 

Under 5 0 0 0 0 654 (452-864) 597 (409-806) 1,834 (1,570-2,153) 1,740 (1,500-2,029) 

5 to 9 1,830 (1,141-2,771) 3,273 (2,056-4,895) 7,769 (4,935-11,042) 8,508 (5,462-12,228) 775 (549-1044) 647 (453-882) 1,484 (1,281-1,730) 1,374 (1,194-1,594) 

10 to 14 9,006 (6,302-12,649) 15,438 (10,937-21,502) 26,510 (19,013-35,636) 28,382 (20,431-38,329) 820 (577-1075) 680 (471-907) 1,442 (1,245-1,677) 1,336 (1,165-1,543) 

15 to 19 13,650 (10,140-17,623) 21,996 (16,753-28,580) 31,221 (21,489-43,280) 32,530 (22,404-45,349) 821 (582-1060) 685 (477-900) 1,384 (1,200-1,605) 1,284 (1,121-1,478) 

20 to 24 15,411 (12,041-19,422) 23,846 (18,809-29,428) 32,731 (22,473-44,335) 33,279 (22,871-45,511) 803 (577-1028) 678 (474-882) 1,332 (1,156-1,546) 1,245 (1,089-1,431) 

25 to 29 16,539 (13,091-20,617) 25,261 (20,285-30,913) 34,464 (24,487-46,534) 34,037 (24,222-45,775) 775 (565-985) 655 (460-856) 1,309 (1,139-1,516) 1,236 (1,081-1,421) 

30 to 34 17,301 (13,624-21,710) 26,325 (21,054-33,016) 34,819 (23,393-46,724) 33,703 (22,991-45,919) 725 (507-940) 613 (424-812) 1,269 (1,104-1,464) 1,216 (1,066-1,395) 

35 to 39 17,521 (14,189-21,744) 27,071 (22,150-33,155) 367,16 (26,535-49,480) 35,745 (25,479-47,580) 680 (484-875) 577 (396-770) 1,216 (1,057-1,402) 1,191 (1,044-1,362) 

40 to 44 17,850 (14,613-22,437) 28,225 (23,260-34,454) 33,690 (23,336-45,377) 33,060 (23,301-44,285) 648 (449-845) 557 (368-754) 1,145 (997-1,316) 1,154 (1,013-1,316) 

45 to 49 16,646 (13,286-20,604) 26,808 (21,522-33,007) 30,395 (20,491-43,652) 29,453 (20,491-42,170) 640 (453-816) 573 (394-761) 1,058 (921-1,212) 1,105 (971-1,260) 

50 to 54 14,976 (11,857-18,607) 24,129 (19,180-29,910) 31,828 (22,032-43,465) 30,168 (21,022-41,707) 656 (477-847) 623 (436-814) 953 (827-1,094) 1,038 (913-1,178) 

55 to 59 13,220 (10,401-16,569) 21,136 (16,686-26,641) 25,978 (17,670-35,409) 24,190 (16,692-32,971) 718 (534-928) 709 (518-927) 830 (716-950) 929 (812-1,057) 

60 to 64 11,463 (9,006-14,363) 18,119 (14,185-22,767) 28,245 (20,214-37,880) 26,084 (18,545-34,991) 819 (609-1,086) 829 (613-1,084) 695 (592-804) 811 (704-922) 

65 to 69 9,701 (7,291-12,172) 15,110 (11,432-18,934) 30,535 (20,260-42,995) 29,305 (19,400-41,179) 961 (687-1,286) 972 (722-1,270) 576 (482-679) 666 (572-762) 

70 to 74 7,936 (6,091-10,251) 12,166 (9,350-15,653) 32,835 (23,558-44,694) 33,827 (24,655-45,761) 1,132 (807-1,551) 1,134 (828-1,521) 497 (410-595) 555 (466-648) 

75 to 79 6,568 (5,049-8,553) 9,951 (7,550-12,906) 32,676 (23,256-44,768) 34,430 (24,547-45,957) 1,382 (972-1,842) 1,300 (923-1,725) 463 (368-567) 485 (397-580) 

80 plus 5,219 (4,043-6,695) 7,811 (6,023-10,032) 26,936 (19,712-35,087) 28,633 (21,211-37,635) 1,677 (1,203-2,200) 1,463 (1,073-1,917) 161 (120-205) 170 (132-212) 

 

Age 

group 

(years) 

Prevalence per 100,000 (95% uncertainty interval) 

Alzheimer's disease and other dementias Brain and CNS cancer Parkinson's disease Multiple sclerosis Motor neuron diseases 
Other neurological 

disorders 

Males Females Males Females Males Females Males Females Males Females Males Females 

Under 5 0 0 9.2 (4.8-14.3) 6.8 (4.7-9.7) 0 0 0 0 0.7 (0.5-1.1) 0.6 (0.3-0.9) 0.6 (0.3-1.0) 0.4 (0.2-0.6) 

5 to 9 0 0 2.8 (1.7-4.0) 2.9 (2.0-4.2) 0 0 0.05 (0.01-0.11) 0.07 (0.02-0.15) 1.3 (0.9-1.8) 1.0 (0.7-1.5) 0.7 (0.3-1.3) 0.4 (0.2-0.7) 

10 to 14 0 0 1.9 (1.2-2.6) 2.1 (1.5-2.8) 0 0 0.4 (0.2-0.7) 0.6 (0.3-1.0) 1.7 (1.1-2.4) 1.4 (0.9-2.0) 0.7 (0.3-1.3) 0.4 (0.1-0.7) 

15 to 19 0 0 2.0 (1.3-2.9) 2.6 (2.0-3.5) 0 0 1.2 (0.7-2.0) 2.1 (1.3-3.2) 2.1 (1.4-3.0) 1.6 (1.1-2.4) 0.8 (0.4-1.3) 0.3 (0.2-0.6) 

20 to 24 0 0 2.0 (1.3-2.7) 2.5 (1.8-3.5) 0.3 (0.1-0.6) 0.2 (0.1-0.4) 2.7 (1.8-4.1) 4.8 (3.3-7.0) 2.4 (1.7-3.4) 1.8 (1.3-2.7) 0.8 (0.4-1.4) 0.4 (0.2-0.7) 

25 to 29 0 0 2.4 (1.6-3.3) 2.7 (1.8-3.7) 1.9 (0.6-3.8) 1.3 (0.4-2.8) 4.9 (3.3-7.7) 8.7 (5.9-13.1) 2.6 (1.8-3.7) 2.0 (1.4-2.9) 0.7 (0.4-1.2) 0.4 (0.2-0.8) 

30 to 34 0 0 2.6 (1.8-3.5) 2.3 (1.6-3.0) 5.3 (2.5-9.8) 3.9 (1.7-7.3) 7.4 (5.1-10.4) 12.8 (9.0-17.7) 2.7 (1.6-3.9) 2.2 (1.3-3.3) 0.7 (0.3-1.2) 0.5 (0.2-1.0) 

35 to 39 0 0 3.0 (2.0-4.1) 2.2 (1.5-2.9) 11.8 (7.3-17.7) 8.5 (5.0-13.4) 9.8 (6.9-13.0) 16.7 (12.0-21.5) 2.5 (1.5-3.9) 2.2 (1.3-3.4) 0.6 (0.3-1.1) 0.6 (0.3-1.0) 

40 to 44 5.7 (2.8-9.3) 6.9 (3.5-11.1) 2.9 (1.9-3.9) 1.9 (1.4-2.6) 22.5 (14.3-32.5) 16.3 (9.8-24.7) 11.9 (8.8-15.3) 19.7 (14.9-24.9) 2.2 (1.2-3.7) 2.1 (1.2-3.5) 0.7 (0.3-1.3) 0.6 (0.3-1.2) 

45 to 49 42.5 (27.7-60.5) 52.6 (34.7-74.6) 4.0 (2.6-5.6) 2.7 (1.9-3.6) 41.0 (29.2-54.4) 30.4 (20.9-41.6) 13.3 (9.9-16.6) 21.7 (16.7-26.5) 2.0 (1.1-3.1) 2.0 (1.2-3.2) 0.8 (0.3-1.4) 0.6 (0.3-1.1) 

50 to 54 125.4 (90.4-169.2) 161.2 (117.1-215.8) 5.1 (3.1-7.2) 4.0 (2.7-5.4) 69.9 (51.1-92.5) 53.2 (37.6-70.7) 13.8 (10.4-17.3) 22.5 (17.6-27.5) 1.7 (0.8-2.9) 1.8 (0.9-3.0) 0.9 (0.4-1.7) 0.6 (0.3-1.2) 

55 to 59 276.5 (209.3-353.3) 370.2 (280.5-470.2) 7.0 (4.5-9.6) 4.9 (3.5-6.5) 117.3 (89.4-154.7) 92.1 (69.0-121.4) 13.2 (10.1-16.7) 21.9 (17.3-27.0) 1.6 (0.8-2.5) 1.6 (0.8-2.7) 1.1 (0.5-2.0) 0.7 (0.3-1.3) 

60 to 64 566.6 (436.3-729.0) 801.3 (621.6-1023.6) 7.3 (4.6-9.9) 5.8 (4.2-7.4) 197.5 (147.8-266.7) 157.8 (118.2-212.7) 11.7 (9.0-14.9) 20.2 (15.9-24.8) 1.6 (0.9-2.5) 1.6 (0.9-2.5) 1.2 (0.5-2.4) 0.9 (0.4-1.7) 

65 to 69 1,065.4 (818.7-1,361.8) 1,527.2 (1,187.7-1,911.6) 7.6 (4.6-10.3) 6.2 (4.4-7.8) 356.0 (262.8-471.9) 282.6 (211.0-371.8) 10.0 (7.5-12.7) 18.2 (14.3-22.4) 1.6 (0.9-2.6) 1.6 (0.9-2.6) 1.3 (0.6-2.3) 1.2 (0.6-2.3) 

70 to 74 2,001.5 (1,560.7-2,557.4) 2,583.5 (2,041.9-3,246.5) 6.8 (4.2-9.2) 6.1 (4.4-7.7) 600.6 (437.7-804.6) 466.4 (345.3-620.5) 8.3 (6.3-10.7) 16.0 (12.5-20.0) 1.6 (0.9-2.5) 1.5 (0.9-2.5) 1.2 (0.6-2.4) 1.5 (0.7-2.9) 

75 to 79 3,853.1 (3,005.5-4,902.6) 4,293.8 (3,400.0-5,408.1) 5.3 (3.3-7.2) 5.2 (3.7-6.6) 946.8 (701.7-1,193.6) 697.4 (523.5-882.6) 6.7 (5.1-8.9) 13.8 (10.8-17.6) 1.5 (0.8-2.5) 1.5 (0.8-2.5) 1.1 (0.6-1.9) 1.7 (0.9-3.0) 

80 plus 9,215.6 (7,250.3-11,413.2) 9,312.1 (7,435.5-11,415.3) 4.1 (2.5-5.4) 3.5 (2.3-4.5) 1,215.2 (862.3-1,609.0) 867.3 (619.8-1,141.1) 4.9 (3.6-6.7) 10.9 (8.5-14.2) 1.8 (1.1-2.8) 1.8 (1.1-2.8) 1.1 (0.5-1.9) 1.8 (0.9-3.2) 
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10.  Age-specific incidence rate of select neurological disorders by sex in India, 2019 

 

Age 

group 

(years) 

Incidence per 100,000 (95% uncertainty interval) 

Stroke Encephalitis Meningitis Tetanus 

Males Females Males Females Males Females Males Females 

Under 5 21 (13-32) 25 (16-37) 104 (83-130) 114 (90-141) 183 (131-251) 209 (152-288) 9.5 (4.5-17.7) 9.0 (4.5-16.6) 

5 to 9 17 (10-27) 22 (13-33) 42 (29-56) 48 (35-64) 50 (29-83) 53 (31-87) 0.2 (0.1-0.6) 0.1 (0.1-0.4) 

10 to 14 14 (8-23) 17 (11-28) 25 (18-33) 28 (21-38) 25 (14-41) 28 (15-45) 0.1 (0.1-0.4) 0.2 (0.1-0.4) 

15 to 19 12 (7-17) 14 (9-21) 18 (14-24) 21 (16-27) 19 (11-33) 23 (14-39) 0.2 (0.1-0.5) 0.2 (0.1-0.5) 

20 to 24 13 (9-19) 15 (10-22) 16 (11-22) 17 (12-23) 17 (9-33) 24 (12-45) 0.2 (0.1-0.5) 0.3 (0.1-0.7) 

25 to 29 18 (12-27) 20 (13-30) 17 (12-23) 16 (11-22) 18 (11-28) 24 (15-37) 0.3 (0.1-0.6) 0.2 (0.1-0.5) 

30 to 34 30 (23-40) 31 (23-41) 20 (15-25) 17 (13-23) 20 (12-30) 22 (14-34) 0.3 (0.1-0.7) 0.3 (0.1-0.6) 

35 to 39 50 (38-66) 49 (36-65) 23 (17-29) 21 (15-28) 17 (10-28) 19 (11-31) 0.6 (0.2-1.1) 0.3 (0.1-0.6) 

40 to 44 84 (68-103) 82 (67-101) 28 (21-35) 27 (20-35) 17 (10-26) 18 (11-27) 0.6 (0.2-1.3) 0.3 (0.2-0.7) 

45 to 49 133 (100-171) 131 (99-168) 34 (26-42) 36 (27-45) 18 (11-28) 21 (12-32) 0.7 (0.3-1.5) 0.4 (0.2-0.9) 

50 to 54 202 (164-247) 195 (158-236) 43 (35-53) 47 (38-58) 20 (13-30) 23 (15-36) 0.8 (0.3-1.7) 0.7 (0.3-1.4) 

55 to 59 291 (223-379) 271 (205-354) 56 (42-72) 62 (48-78) 21 (12-34) 24 (13-39) 0.9 (0.4-2.0) 0.5 (0.2-1.1) 

60 to 64 358 (286-448) 342 (272-430) 76 (61-93) 82 (67-99) 23 (14-34) 26 (16-39) 0.9 (0.4-2.2) 0.6 (0.3-1.4) 

65 to 69 404 (306-523) 408 (308-526) 104 (81-129) 106 (85-129) 25 (15-39) 29 (17-44) 1.0 (0.4-2.3) 0.8 (0.4-1.8) 

70 to 74 456 (363-579) 475 (377-604) 136 (110-165) 130 (107-157) 31 (21-46) 36 (24-53) 1.6 (0.6-3.4) 2.0 (0.9-4.3) 

75 to 79 518 (399-656) 549 (423-693) 172 (136-213) 154 (126-185) 43 (24-68) 47 (27-75) 1.7 (0.6-3.5) 1.9 (0.9-3.9) 

80 plus 786 (634-945) 809 (655-969) 282 (239-329) 220 (187-255) 61 (43-83) 72 (51-97) 3.7 (1.3-6.9) 2.2 (1.1-4.5) 

 

Age 

group 

(years) 

Incidence per 100,000 (95% uncertainty interval) 

Traumatic brain injuries Spinal cord injuries 

Males Females Males Females 

Under 5 159 (126-197) 121 (93-157) 2.4 (1.9-2.9) 2.2 (1.7-2.8) 

5 to 9 177 (137-226) 154 (115-203) 2.6 (2.0-3.3) 2.6 (1.9-3.6) 

10 to 14 297 (221-396) 212 (158-280) 4.1 (2.9-5.7) 3.7 (2.6-5.0) 

15 to 19 549 (381-809) 277 (205-377) 7.4 (4.9-11.2) 5.2 (3.7-7.4) 

20 to 24 795 (566-1,147) 316 (236-443) 10.9 (7.1-16.4) 6.3 (4.4-9.2) 

25 to 29 857 (586-1,185) 327 (235-445) 12.1 (7.9-18.5) 6.3 (4.4-9.3) 

30 to 34 855 (587-1,224) 364 (255-508) 12.6 (8.4-19.0) 6.7 (4.5-10.0) 

35 to 39 874 (632-1,179) 426 (302-582) 13.3 (8.8-19.7) 7.7 (5.1-11.6) 

40 to 44 867 (597-1,212) 455 (314-638) 13.6 (8.9-20.2) 8.3 (5.5-12.7) 

45 to 49 836 (591-1,151) 469 (332-643) 13.7 (9.1- 20.4) 9.1 (6.1-13.7) 

50 to 54 809 (579-1,114) 526 (378-720) 13.9 (9.4-20.6) 11.0 (7.4-16.0) 

55 to 59 803 (573-1,066) 627 (444-829) 14.6 (9.7- 21.1) 14.2 (9.3-20.9) 

60 to 64 832 (591-1,152) 759 (548-1,019) 15.9 (10.7-22.9) 18.8 (12.4-27.5) 

65 to 69 928 (679-1,239) 954 (680-1,314) 18.7 (12.9-26.8) 25.9 (17.0-37.4) 

70 to 74 1,083 (799-1,458) 1,199 (826-1,655) 23.1 (15.6- 33.1) 34.9 (22.0-53.2) 

75 to 79 1,315 (941-1,759) 1,608 (1,073-2,348) 28.9 (18.9-43.1) 48.5 (28.3-78.0) 

80 plus 1,492 (1,165-1,907) 2,107 (1,479-2,964) 33.9 (23.4-48.1) 64.2 (38.9-101.5) 

 

  



127 

 

11.  DALYs of neurological disorders by age group in India, 2019 

 

Age 

group 

(years) 

DALYs (95% uncertainty interval) 

Stroke Headache disorders Epilepsy Cerebral palsy 
Alzheimer's disease and 

other dementias 
Brain and CNS cancer Parkinson's disease 

Under 5 61,095 (80,376-46,812) 0 483,918 (340,741-650,223) 323,514 (218,932-452,501) 0 152,525 (209,990-107,000) 0 

5 to 9 39,102 (49,836-30,237) 113,317 (294,923-2,516) 416,419 (280,114-58,6507) 303,925 (207,090-428,745) 0 77,556 (102,260-57,321) 0 

10 to 14 61,790 (76,994-48,058) 614,778 (1,485,452-31,872) 489,421 (341,379-675,101) 309,676 (21,0285-433,643) 0 63,584 (81,864-47,863) 0 

15 to 19 112,688 (135,712-91,836) 934,732 (2,248,659-98,586) 551,875 (399,406-738,837) 293,557 (201,821-407,504) 0 40,357 (52,046-31,797) 0 

20 to 24 189,315 (222,518-158,474) 994,570 (2,297,219-127,794) 532,823 (389,152-707,433) 268,557 (184,051-372,695) 0 43,461 (56,171-33,912) 202 (269-142) 

25 to 29 219,046 (254,542-187,993) 967,864 (2,163,482-139,506) 448,710 (325,409-605,677) 240,731 (165,606-333,451) 0 50,172 (63,462-40,122) 517 (879-291) 

30 to 34 336,316 (388,878-287,734) 943,454 (2,099,583-152,080) 419,450 (302,661-561,163) 216,394 (148,783-300,450) 0 58,547 (73,989-45,597) 1,191 (1,997-689) 

35 to 39 519,634 (606,338-447,236) 878,245 (1,969,305-140,278) 347,344 (245,289-468,534) 186,656 (128,493-257,418) 0 65,989 (84,040-50,929) 2,376 (3,487-1,549) 

40 to 44 714,736 (837,898-607,301) 778,200 (1,707,200-142,375) 261,070 (173,343-362,862) 149,245 (103,235-205,208) 5,053 (15,927-1,118) 65,499 (83,022-49,036) 8,160 (10,187-6,457) 

45 to 49 1,016,498 (1,192,369-856,238) 648,750 (1,432,899-139,047) 222,940 (150,648-305,319) 117,772 (81,571-162,495) 25,851 (72,740-6,988) 66,075 (83,267-49,416) 15,234 (18,662-12,309) 

50 to 54 1,575,146 (1,863,058-1,299,160) 503,180 (1,093,091-119,667) 204,773 (145,944-273,076) 86,174 (59,602-117,623) 47,328 (12,2701-15,498) 69,705 (90,327-52,056) 25,477 (30,936-20,910) 

55 to 59 1,995,898 (2,354,992-1,638,409) 370,346 (797,921-96,172) 187,919 (135,488-250,413) 58,658 (40,811-80,248) 7,7104 (19,5236-28,474) 70,269 (88,784-52,407) 35,431 (43,042-29,131) 

60 to 64 2,474,918 (2,856,635-2,102,663) 277,510 (578,568-78,647) 170,216 (123,899-227,936) 37,333 (26,041-50,870) 12,6321 (30,4524-50,489) 64,909 (81,081-49,372) 56,936 (67,630-47,043) 

65 to 69 2,673,010 (3,073,563-2,305,540) 195,920 (399,705-59,987) 156,515 (115,869-213,329) 19,875 (14,045-26,631) 198,689 (484,173-79,756) 56,140 (69,546-42,377) 99,557 (117,685-82,736) 

70 to 74 2,188,945 (2,519,351-1,889,095) 110,806 (233,051-34,409) 122,680 (89,460-165,000) 8,114 (5,713-10,735) 277,601 (665,378-118,405) 36,425 (44,380-27,312) 155,178 (180,885-132,041) 

75 to 79 1,649,874 (1,912,145-1,410,557) 57,676 (119,891-17,234) 83,894 (57,669-114,278) 2,885 (2,058-3,809) 341,849 (845,907-143,769) 20,654 (25,355-15,394) 185,690 (215,563-158,541) 

80 plus 1,504,316 (1,751,097-1,253,983) 39,736 (82,844-12,554) 94,385 (67,293-12,4499) 1,031 (742-1,362) 1,025,745 (2,524,234-390,192) 11,379 (13,836-8,283) 227,024 (267,162-194,400) 

 

Age 

group 

(years) 

DALYs (95% uncertainty interval) 

Multiple sclerosis Motor neuron diseases 

Other non-

communicable 

neurological disorders 

Encephalitis Meningitis Tetanus Traumatic brain injuries Spinal cord injuries 

Under 5 0 4,115 (5,845-2,830) 47,589 (29,266-69,305) 621,712 (1,087,131-418,201) 917,190 (1,214,847-664,817) 409,878 (674,295-228,501) 4,461 (2,867-6,327) 2,625 (1,810-3,476) 

5 to 9 47 (87-21) 933 (1,212-706) 53,955 (32,593-80,928) 270,812 (497,609-171,897) 194,748 (266,006-143,717) 7,363 (16,789-3,826) 10,325 (6,746-14,670) 8,853 (6,215-11,728) 

10 to 14 230 (383-127) 1,226 (1,556-944) 77,252 (45,940-122,394) 202,989 (352,313-140,310) 149,248 (186,774-116,402) 5,897 (11,945-3,416) 22,064 (14,926-30,934) 18,066 (12,406-24,389) 

15 to 19 925 (1,374-613) 1,502 (1,896-1,177) 70,020 (44,048-105,520) 130,125 (229,432-94,244) 121,194 (147,768-100,121) 7,412 (15,199-4,585) 43,936 (29,678-61,311) 32,013 (22,404-41,721) 

20 to 24 3,604 (5,307-2,535) 1,598 (1,998-1,265) 48,808 (31,547-71,337) 141,689 (251,714-104,266) 105,430 (128,280-87,566) 8,849 (17,225-5,223) 74,844 (51,091-105,463) 51,091 (36,039-65,132) 

25 to 29 5,991 (8,201-4,408) 1,361 (1,730-1,065) 32,587 (21,794-46,614) 97,966 (1732,43-72,074) 92,385 (110,749-76,191) 8,066 (15,136-5,150) 105,822 (72,796-144,769) 68,469 (48,834-88,928) 

30 to 34 9,605 (12,496-7,499) 1,774 (2,225-1,400) 27,599 (19,230-39,142) 100,845 (173,032-75,942) 85,263 (102,367-71,445) 8,787 (15,347-5,670) 138,836 (95,734-194,317) 85,765 (61,121-109,403) 

35 to 39 13,399 (17,003-10,543) 2,665 (3,383-2,081) 29,396 (21,033-40,360) 95,241 (166,307-71,638) 76,736 (93,491-63,507) 9,528 (16,317-5,871) 162,627 (112,741-223,247) 93,939 (66,270-120,431) 

40 to 44 15,389 (19,293-12,215) 3,634 (4,723-2,761) 28,428 (20,596-38,324) 86,784 (145,589-64,672) 73,186 (88,332-59,736) 8,899 (14,867-5,215) 178,048 (124,503-243,191) 94,738 (67,426-121,140) 

45 to 49 15,305 (19,022-12,138) 5,650 (7,389-4,138) 30,393 (22,664-40,435) 76,165 (134,453-56,429) 74,561 (91,377-60,409) 8,732 (14,347-5,247) 187,426 (131,677-256,847) 91,832 (67,034-117,596) 

50 to 54 14,057 (18,163-11,132) 6,655 (8,878-4,803) 28,049 (20,912-36,846) 72,577 (131,354-52,285) 74,119 (91,873-59,192) 8,737 (15,249-5,158) 184,949 (130,552-251,330) 81,993 (59,420-104,009) 

55 to 59 12,158 (15,535-9,597) 8,080 (10,660-6,038) 26,149 (20,048-34,390) 78,365 (139,207-56,875) 64,248 (79,290-51,748) 6,473 (12,046-3,850) 176,492 (123,855-241,675) 68,572 (50,654-86,940) 

60 to 64 9,006 (11,487-7,080) 7,298 (9,426-5,449) 22,265 (17,341-28,211) 90,028 (154,113-67,226) 46,318 (56,454-37,786) 5,322 (9,855-3,311) 167,859 (119,695-226,951) 59,057 (43,036-73,903) 

65 to 69 6,153 (7,576-5,004) 6,477 (8,217-4,981) 18,539 (14,704-23,557) 98,033 (161,068-74,395) 39,455 (47,846-32,040) 4,296 (7,443-2,674) 150,412 (106,512-202,724) 50,912 (37,457-64,111) 

70 to 74 3,701 (4,605-2,980) 2,939 (3,864-2,218) 12,827 (10,226-16,130) 95,446 (150,327-73,167) 31,455 (38,776-25,621) 4,972 (8,431-2,994) 113,407 (80,365-151,479) 36,683 (26,735-46,267) 

75 to 79 2,005 (2,472-1,625) 1,416 (1,844-1,068) 8,483 (6,753-10,642) 78,260 (116,790-60,486) 23,017 (27,880-18,785) 2,511 (4,129-1,474) 79,229 (56,324-106,840) 24,247 (17,642-31,219) 

80 plus 1,419 (1,720-1,148) 611 (794-466) 6,723 (5,323-8,304) 85,308 (113,135-67,638) 23,427 (27,921-18,926) 2,160 (3,710-1,203) 69,572 (49,042-94,965) 18,594 (12,801-25,266) 
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12.  Percentage contribution of communicable, non-communicable, and injury-related disorders to total neurological DALYs in each age group in India, 2019 

 

Age group 

(years) 

Non-communicable 

neurological 

disorders 

Communicable 

neurological 

disorders 

Injury-related 

neurological 

disorders 

Under 5 36.1% 63.7% 0.2% 

5 to 9 67.1% 31.6% 1.3% 

10 to 14 80.2% 17.8% 2.0% 

15 to 19 85.7% 11.1% 3.2% 

20 to 24 84.5% 10.4% 5.1% 

25 to 29 84.1% 8.5% 7.4% 

30 to 34 82.8% 8.0% 9.2% 

35 to 39 82.4% 7.3% 10.3% 

40 to 44 82.1% 6.8% 11.0% 

45 to 49 83.1% 6.1% 10.7% 

50 to 54 85.8% 5.2% 8.9% 

55 to 59 87.8% 4.6% 7.6% 

60 to 64 89.8% 3.9% 6.3% 

65 to 69 90.9% 3.8% 5.3% 

70 to 74 91.2% 4.1% 4.7% 

75 to 79 91.9% 4.1% 4.0% 

80 plus 93.6% 3.6% 2.8% 

 


